刘冬梅1,2,王彤旭1a,陈 亚1a,温演柔1a,文瀚泽1a,韩 鹏1,2
(1.华南师范大学 a.物理与电信工程学院;b.广东省光电检测仪器工程技术研究中心,广东 广州 510006;2.华南师大(清远) 科技创新研究院,广东 清远 511517)
DOI:10.13732/j.issn.1008-5548.2022.04.004
收稿日期: 2022-01-07, 修回日期:2022-05-12,在线出版时间:2022-06-22。
基金项目:国家自然科学基金项目,编号:61975058;广东省自然科学基金项目,编号:2019A1515011401。
第一作者简介:刘冬梅(1981—),女,副教授,博士,硕士生导师,研究方向为光电技术与系统。E-mail:dmliu@scnu.edu.cn。
通信作者简介:韩鹏(1976—),男,教授,博士,博士生导师,研究方向为光电技术与系统。E-mail:hanp@scnu.edu.cn。
摘要:利用环形相位光学衍射结构产生贝塞尔-高斯光束,将其投影到作布朗运动的聚苯乙烯小球溶液中;基于共轴差分动态显微技术,测量粒径为813 nm的聚苯乙烯小球在不同光功率下的扩散系数,研究贝塞尔-高斯光束对小球扩散运动的影响,并与高斯光束作用下的小球扩散系数相比较。结果表明:不论是在高斯光束还是在贝塞尔-高斯光束作用下,作受限布朗运动的聚苯乙烯小球的扩散系数均小于无激光作用时的;在相同激光功率照射下,贝塞尔-高斯光束作用下小球的扩散系数均大于高斯光束作用时的;随着激光功率的增加,2种光束照射下的小球扩散系数均出现先减小后略有增加的现象。
关键词:扩散系数;贝塞尔-高斯光束;受限布朗运动;差分动态显微术
Abstract:A Bessel-Gaussian beam was generated by a ring-shaped phase optical diffraction structure and projected into a solution of polystyrene spheres undergoing Brownian motion. Based on coaxial differential dynamic microscopy, the diffusion coefficients of polystyrene beads with a particle size of 813 nm under different optical powers were measured. The influence of the Bessel-Gaussian beam on the diffusion motion of the ball was studied and compared with that of the ball under the action of the Gaussian beam. The results show that the diffusion coefficients of the restricted Brownian motion of polystyrene spheres are smaller than those of without laser action, whether under the action of Gaussian beam or Bessel-Gaussian beam. Under the same laser power, the diffusion coefficients of the balls under the action of Bessel-Gaussian beams are all larger than those under the action of Gaussian beams. With the increase of laser power, the diffusion coefficients of the spheres under the irradiations of the two beams first decrease and then increase slightly.
Keywords:diffusion coefficient; Bessel-Gaussian beam; confined Brownian motion; differential dynamic microscopy
参考文献(References):
[1]BIAN X,KIM C,KAMIADAKIS G E.111 years of Brownian motion[J].Soft Matter,2016,12(30):6331-6346.
[2]EINSTEIN A.On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat[J].Annalen der Physic,1905,322(8):546-560.
[3]EINSTEIN A.Investigations on the theory of the Brownian movement[M].New York:Dover Publications,1956.
[4]MILLIS J.Brownian movements and molecular reality[J].Science,1911,33(846):426-427.
[5]FABIO G,DORIANO B,VERONIQUE T,et al.Scattering information obtained by optical microscopy:differential dynamic microscopy and beyond[J].Physical Review E,2009,80(3):15-15.
[6]MARCUCCI L,YANAGIDA T.Attached molecular motor in trapped single molecule assay as a bi-dimensional Brownian multi-stable system[J].Biophysical Journal,2014,106(2):156a.
[7]CERBINO R,GIAVAZZI F,HELGESON M E.Differential dynamic microscopy for the characterization of polymer systems[J].Journal of Polymer Science,2021,1:1-11.
[8]REIMANN P.Current reversal in a white noise driven flashing ratchet[J].Physics reports-review section of Physics letters,1997,290(1/2):149-155.
[9]KAI H,KHORASANI F B,CONRAD J C,et al.Diffusive dynamics of nanoparticles in arrays of nanoposts[J].ACS Nano,2013,7(6):5122-5130.
[10]CHEN X L,LIU D M,CAI D J,et al.Coaxial differential dynamic microscopy for measurement of Brownian motion in weak optical field[J].Optics Express,2018,26(24):32083-32090.
[11]陈柏桦,刘冬梅,邱健,等.光场偏振态对布朗运动扩散系数的影响[J].中国粉体技术,2021,27(3):68-72.
[12]AYALA Y A,ARZOLA A V,VOLKE-SEPULVEDA K.3D micromanipulation at low numerical aperture with a single light beam:the focused-bessel trap[J].Optical Letters,2016,41(3):614-617.
[13]陈一村,张文亮,邱健,等.基于差分动态显微技术的布朗运动实验研究[J].中国粉体技术,2017,23(2):30-34.
[14]LEOCMACH M,GIBAUD T.Differential dynamic microscopy to characterize Brownian motion and bacteria motility[J].American Journal of Physics,2016,84(3):202-210.
[15]LEMONS D S,GYTHIEL A.Paul Langevin’s 1908 paper “on the theory of Brownian motion”[J].American Journal of Physics,1997,65(11):1079-1081.
[16]GOLDBERG D E,HOLLAND J H.Genetic algorithms in search,optimization and machine learning[M].Goldberg:Addison-Wesley Publish Company,1989.
[17]DENG Y,BECHHOEFER J,FORDE N R.Brownian motion in a modulated optical trap[J].Journal of Optics A:Pure and Applied Optics,2007,9(8):256-263.