ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第4期
<返回第4期

细磨多粒级动力学试验与模拟

Kinetics test and simulation of fine grinding with multi-size feed

李 沛a,b,邓中诚a,b,池慧强a,赵善忠a,曹 钊a,b

(内蒙古科技大学 a. 矿业与煤炭学院;b. 内蒙古自治区矿业工程重点实验室,内蒙古 包头 014010)


DOI:10.13732/j.issn.1008-5548.2022.04.003

收稿日期: 2021-04-04, 修回日期:2022-03-29,在线出版时间:2022-06-22。

基金项目: 国家自然科学基金项目,编号:51764045;内蒙古自治区科技计划资助项目,编号:2019KJJH001。

第一作者简介: 李沛(1990—),男,博士研究生,研究方向为粉碎理论与磨矿优化。E-mail:lp_mining@foxmail.com。

通信作者简介: 曹钊(1985—),男,教授,博士,博士生导师,研究方向为复杂多金属选矿与选择性磨矿。E-mail:caozhao1217@163.com。


摘要:以陶瓷球细磨铁矿为工程背景,提出用多粒级物料进行磨矿动力学试验与参数反算的新方法。检验细磨的零阶产率特征,如符合便可用BII法探明粉碎分布函数;利用非线性规划,通过粒度分布随磨矿时间、能量输入的演化信息推算粉碎速度函数。配合磨矿功率估算,应用总量平衡模型模拟不同给矿粒度分布、工况、能量输入水平或作业时间下的磨矿效果,包括产品粒度分布、新生粒级产率、作业比能量等。结果表明:该方法能减少细磨动力学试验的难度和作业量,有助于运用模拟展现磨矿效果随作业条件的变动规律;基于上述方法,可从小型磨矿试验结果推测大型磨机的生产状况,为工艺设计与设备选型提供量化依据。

关键词:磨矿动力学;细磨;总量平衡模型

Abstract:A new method was presented by which kinetics functions were readily obtained from the grinding tests with multi-size feed. Zero order characteristics of fine grinding was verified and thus breakage function could be deduced by BII method. Selection function was inferred by non-linear programming based on the particle size distribution(PSD) evolution with time or input energy. Cooperated with milling power estimation, the population balance model predicted the milling performance, such as PSD, productivity, specific energy, etc., which were affected by the PSD of feed, operating conditions and input energy. The results show that the method facilitates the study of fine grinding kinetics significantly, by which the variation of milling performance with operating conditions can be properly simulated. Moreover, the full-scale milling operation can be predicted based on small-scale tests, which will facilitate the grinding circuit design with detailed data.

Keywords:grinding kinetics; fine grinding; population balance model


参考文献(References):

[1]尹自信.球磨机铁矿石颗粒破碎及粒度分布行为研究[D].徐州:中国矿业大学,2020.

[2]杨金林,周文涛,蒋林伶,等.磨矿动力学研究概述[J].矿产综合利用,2017(4):4-10.

[3]AUSTIN L G.Introduction to the mathematical description of grinding as a rate process[J].Powder Technology,1971,5 (1):1-17.

[4]赵瑞超.东鞍山铁矿石磨矿特性基础研究[D].沈阳:东北大学,2017.

[5]HERBST J,FUERSTENAU D.Scale-up procedure for continuous grinding mill design using population balance models[J].International Journal of Mineral Processing,1980,7(1):1-31.

[6]SHAHBAZI B,JAFARI M,PARIAN M,et al.Study on the impacts of media shapes on the performance of tumbling mills:a review[J].Minerals Engineering,2020,157:106490.

[7]李沛,刘建远,赵瑞超,等.批次球磨产品的粒度分布预测[J].金属矿山,2018,47(11):98-102.

[8]KLIMPEL R,AUSTIN L.The back-calculation of specific rates of breakage and non-normalized breakage distribution parameters from batch grinding data[J].International Journal of Mineral Processing,1977,4(1):7-32.

[9]LI P,CAO Z,ZHAO R,et al.The kinetics and efficiency of batch ball grinding with cemented tungsten carbide balls[J].Advanced Powder Technology,2020,31(6):2412-2420.

[10]MULENGA F K,GHAREHGHESHLAGH H H,CHEHREGHANI S.Assessing the dependency of selection function parameters with batch mill design[J].Advanced Powder Technology,2019,30(10):2042-2051.

[11]RAJAMANI R,KUMAR P,GOVENDER N.The evolution of grinding mill power models[J].Mining,Metallurgy and Exploration,2019,36(1):151-157.

[12]段希祥.碎矿与磨矿[M].北京:冶金工业出版社,2006:165-168.

[13]乔彬,乔龄山.钢球与钢段在水泥粉磨中的作用性能对比试验[J].水泥,2009(12):13-18.

[14]赖俊全,向子祥,李雨晴,等.纳米陶瓷球作细磨介质下的磨矿动力学[J].有色金属科学与工程,2021,12(3):100-105.

[15]吴志强,方鑫,童佳琪,等.纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程,2019,10(5):91-96.

[16]FARIA P M C,RAJAMANI R K,TAVARES L M.Optimization of solids concentration in iron ore ball milling through modeling and simulation[J].Minerals,2019,9(6):366.

[17]GUPTA V K.Effect of size distribution of the particulate material on the specific breakage rate of particles in dry ball milling[J].Powder Technology,2017,305:714-722.

[18]YEKELER M,OZKAN A,AUSTIN L G.Kinetics of fine wet grinding in a laboratory ball mill[J].Powder Technology,2001,114(1):224-228.

[19]BILGILI E,YEPES J,SCARLETT B.Formulation of a non-linear framework for population balance modeling of batch grinding:beyond first-order kinetics[J].Chemical Engineering Science,2006,61(1):33-44.

[20]MWANGA A,PARIAN M,LAMBERG P,et al.Comminution modeling using mineralogical properties of iron ores[J].Minerals Engineering,2017,111:182-197.