ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第4期
<返回第4期

倾斜热管湍流床内颗粒流动与换热特性分析

Analysis on characteristics of particle flow and heat transfer in a turbulent fluidized bed with inclined heat pipes

姚秀颖1,徐 博1,2,卢春喜1,刘梦溪1

(1. 中国石油大学(北京) 重质油国家重点实验室,北京 102249;2. 东方电气集团东方锅炉股份有限公司,四川 自贡 643001)


DOI:10.13732/j.issn.1008-5548.2022.04.001

收稿日期: 2021-12-28, 修回日期:2022-04-26,在线出版时间:2022-05-13。

基金项目:国家自然科学基金委创新群体项目,编号:22021004;国家自然科学基金项目,编号:91834303。

第一作者简介:姚秀颖(1985—),女,讲师,博士,硕士生导师,研究方向为多相流传递与反应。E-mail:xyyao2014@126.com。

通信作者简介:卢春喜(1962—),男,教授,博士,博士生导师,研究方向为石油化工装备。E-mail:lcx725@sina.com。


摘要:针对倾斜热管间壁式换热器湍流床一侧,进行几何建模和网格划分,采用双流体模型耦合能量最小多尺度(energy minimization multi-scale, EMMS)曳力模型进行模型验证,研究颗粒轴向速度的轴、径向分布和热管表面的颗粒速度分布,分析热管表面的换热性能。结果表明:热管可抑制湍流床内气泡的上升运动,增大热管区下侧的颗粒平均速度;气泡在换热器内沿S形路线向上绕过热管运动,即在热管所在高度,气泡由热管自由端向上运动,在热管之间区域,由床中心向上运动;热管自由端的下表面和约束端的上表面为倾斜热管的特征换热区,颗粒贴壁向上运动,倾斜布置的热管能够强化颗粒的更新速度,促进热量传递;提出以颗粒流速来分析热管表面的传热性能,高效换热区的无因次半径值为-0.8~-0.3;换热性能随表观气速先增强后恒定,转折点对应的气速为0.7 m/s。随轴向高度先减小后增大,最下部热管换热性能最佳。

关键词:倾斜热管;换热器;湍流床;颗粒流动;换热特性

Abstract:Geometric modeling and meshing were carried out for one side of turbulent bed which has a heat exchanger with inclined heat pipes. Two-fluid model coupled with energy minimization multi-scale(EMMS) drag model was used to verify the model. The axial and radial distribution of particle axial velocity and the particle velocity distribution on the surface of heat pipe were studied and the heat transfer performance on heat pipe surface was analyzed. The results show that the heat pipe can restrict the upward movement of bubbles in the turbulent bed, which increases the time-averaged particle velocity under the heat pipe region. In the heat exchanger, the bubbles move upward through the heat pipe along S-shaped route, that is, the bubbles move upward from the free end of heat pipe at the height of the heat pipe and upward through the center of bed in the area between heat pipes. The lower surface of the free end of the heat pipe and its upper surface of the constrained end are called as the characteristic heat transfer areas of the inclined heat pipe, where the particles move upward across tube wall. This movement indicates the inclined arrangement of the heat pipe can strengthen the renewal speed of the particles and promote the bed-to-tube heat transfer. The particle velocity is proposed to analyze the heat transfer performance on heat pipe surface. The dimensionless radius of the efficient heat exchange zone is from-0.8 to-0.3. The heat transfer performance increases first and then keeps the constant with the gas velocity, and the gas velocity corresponding to the turning point is 0.7 m/s. With the increase of the axial height, the heat transfer performance of the heat pipe first decreases and then increases, and the bottom heat pipe has the best heat transfer performance.

Keywords:inclined heat pipe surface; heat exchanger; turbulent fluidized bed; particle flow; heat transfer performance


参考文献(References):

[1]胡敏.催化裂化烟气排放控制技术现状及面临问题的分析[J].中外能源,2012,17(5):77-83.

[2]张莉.浅析光化学烟雾的污染问题[J].四川环境,2005,24(4):74-76.

[3]胡敏.催化裂化装置可再生法烟气脱硫技术若干问题探析[J].炼油技术与工程,2021,51(11):1-6,32.

[4]郭大为,张久顺,龙军,等.脱除烟气中硫氧化物和/或氮氧化物的方法及烃油裂化方法:200610171550.5[P].2008-07-02.

[5]郭大为,张久顺,毛安国,等.一种烟气脱硫脱氮吸附剂再生过程中的换热方法:200810113392.7[P].2009-12-02.

[6]郭大为,张久顺,梁彬,等.催化裂化烟气脱硫、脱氮吸附剂的初步研究[J].石油学报(石油加工),2011,27(2):192-197.

[7]姚秀颖,卢春喜.催化裂化再生催化剂取热技术研究进展[J].石油学报(石油加工),2018,34(2):217-228.

[8]姚秀颖,李建涛,卢春喜,等.流化床间壁换热再生耦合装置:202020183168.1[P].2020-10-30.

[9]JOUHARA H,CHAUHAN A,NANNOU T,et al.Heat pipe based systems:advances and applications[J].Energy,2017,128:729-754.

[10]YAO X,ZHANG Y,LU C,et al.Systematic study on heat transfer and surface hydrodynamics of a vertical heat tube in a fluidized bed of FCC particles[J].AIChE Journal,2015,61:68-83.

[11]YANG Z,ZHANG Y,OLORUNTOBA A,et al.MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator.Part I:effects on hydrodynamics[J].Chemical Engineering Journal,2021,412:128-634.

[12]LECHER S,MERZSCH M,KRAUTZ H.Heat-transfer from horizontal tube bundles into fluidized beds with Geldart A lignite particles[J].Powder Technology,2014,253:14-21.

[13]ABID B A,ALI J M,ALZUBAIDI A A.Heat transfer in gas-solid fluidized bed with various heater inclinations[J].International Journal of Heat and Mass Transfer,2011,54:2228-2233.

[14]KIM S W,KIM S D.Heat transfer characteristics in a pressurized fluidized bed of fine particles with immersed horizontal tube bundle[J].International Journal of Heat and Mass Transfer,2013,64:269-77.

[15]姚秀颖,徐博,刘梦溪,等.倾斜热管湍流床的气固流动特性[J].中国粉体技术,2022,28(1):1-14.

[16]OSTERMEIER P,DAWO F,VANDERSICKEL A,et al.Numerical calculation of wall-to-bed heat transfer coefficients in Geldart B bubbling fluidized beds with immersed horizontal tubes[J].Powder Technology,2018,333:193-208.

[17]WAHYUDI H,CHU K,YU A.3D particle-scale modeling of gas-solids flow and heat transfer in fluidized beds with an immersed tube[J].International Journal of Heat and Mass Transfer,2016,97:521-537.

[18]SCHMIDT A,RENZ U.Numerical prediction of heat transfer between a bubbling fluidized bed and an immersed tube bundle[J].Heat and Mass Transfer,2005,41:257-270.

[19]LEE J M,LIM E W C.Heat transfer in a pulsating turbulent fluidized bed[J].Applied Thermal Engineering,2020,174:1-29.

[20]BISOGNIN P C,FUSCO J M,SOARES C.Heat transfer in fluidized beds with immersed surface:effect of geometric parameters of surface[J].Powder Technology,2016,297:401-408.

[21]WANG S,LUO K,HU C,et al.Investigation of gas-solid flow dynamics and heat transfer in fluidized beds by using DEM-LES coupling approach[C]//Proceedings of the 7th International Conference on Discrete Element Methods:2017.Singapore:Springer,2017:1023-1035.

[22]MICKLEY H S,FAIRBANKS D F.Mechanism of heat transfer to fluidized beds[J].AIChE Journal,1955(1):374-384.

[23]YAO X,ZHANG Y,LU C,et al.Systematic study on heat transfer and surface hydrodynamics of a vertical heat tube in a fluidized bed of FCC particles[J].AIChE Journal,2015,61:68-83.

[24]傅梦倩,姚秀颖,范怡平,等.双层喷嘴提升管进料区内气固流动特性的数值模拟[J].过程工程学报,2020,20(7):757-769.

[25]徐逞祥.无序环流取热器内气固两相流动和内循环特性研究[D].北京:中国石油大学(北京),2020.

[26]LI J,YAO X,LIU L,et al.Bed-to-wall heat transfer in a gas-solid fluidized bed with external solids circulation:modified packet renewal model[J].Powder Technology,2021,383:19-29.

[27]AL-BUSOUL M A,ABU-EIN S K.Local heat transfer coefficients around a horizontal heated tube immersed in a gas fluidized bed[J].Heat and Mass Transfer,2003,39(4):355-358.