ISSN 1008-5548

CN 37-1316/TU

2026年32卷  第1期

硅灰或纳米二氧化硅对磷酸钾镁水泥耐水性的影响

Effect of silica fume or nano-silica on water resistance of magnesium potassium phosphate cements


赵桂朋,魏 鑫,寇志鹏,张 冲,张秀芝,段广彬

济南大学 材料科学与工程学院,山东 济南250022


引用格式:

赵桂朋,魏鑫,寇志鹏,等. 硅灰或纳米二氧化硅对磷酸钾镁水泥耐水性的影响[J]. 中国粉体技术,2026,32(1):1-9.

ZHAO Guipeng, WEI Xin, KOU Zhipeng, et al. Effect of silica fume or nano-silica on water resistance of magnesium potassium phosphate cements[J]. China Powder Science and Technology,2026,32(1):1−9.

DOI:10.13732/j.issn.1008-5548.2026.01.012

收稿日期:2025-03-18,修回日期:2025-12-12,上线日期:2025-12-23。

基金项目:国家自然科学基金项目,编号:52178211。

第一作者:赵桂朋(1999—),男,硕士生,研究方向为磷酸镁水泥。E-mail:33398372422@qq. com。

通信作者:

张秀芝(1974—),女,教授,博士,博士生导师,研究方向为绿色低碳水泥基材料。E-mail:mse_zhangxz@ujn. edu. cn。

段广彬(1983—),男,教授,博士,博士生导师,研究方向为固体废弃物综合利用。E-mail:mse_duangb@ujn. edu. cn。


摘要:目的】为了提高磷酸钾镁水泥(magnesium potassium phosphate cement,MKPC)的耐水性能,掺入硅灰或纳米二氧化硅,实现 MKPC在水下工程、海洋工程及潮湿环境中的应用。【方法】分别在 MKPC中掺入硅灰和纳米二氧化硅,并分别在空气养护和水中养护 2种固化条件下进行实验,以抗压强度和孔结构作为 MKPC耐水性能的评价指标,探讨 MKPC耐水性能的提升效果及作用机制。【结果】掺入质量分数为 5% 的硅灰或质量分数为 1% 的纳米二氧化硅可有效改善MKPC的耐水性能;特别是添加质量分数为1%纳米二氧化硅时,MKPC在水养7 d条件下的抗压强度高于空气养护7 d下的抗压强度;掺入质量分数为1%的纳米二氧化硅后,MKPC在水养7 d时形成的孔隙主要为5 nm的凝胶孔,这种微孔结构不会降低MKPC的力学性能。【结论】添加硅灰或纳米二氧化硅能够改善MKPC的孔结构和其在水中的抗压强度。

关键词:磷酸钾镁水泥;耐水性能;硅灰;纳米二氧化硅;孔结构

Abstract

Objective Magnesium potassium phosphate cement (MKPC) exhibits rapid setting, high early strength, and stable volume, making it highly promising for emergency repair applications. However, its limited water resistance restricts its wider use in underwater engineering, as humid environments may induce strength retrogression and structural deterioration. In this study, silica fume and nano-silica are employed as modifiers to investigate their effects on the water resistance of MKPC, determine optimal dosages, and explore underlying mechanisms, thereby providing technical support for the application of MKPC in humid and underwater engineering projects.

Methods The experiment adopted a controlled variable method. The matrix mix ratio of MKPC was kept constant, and specimens were prepared by incorporating different ratios of silica fume (0%,3%,5%,7%) and nano-silica (0%, 0.5%, 1%, 1.5%), respectively. Two curing conditions were established: air curing (20±2 ℃, RH 60±5%) and water curing (20±2 ℃ in distilled water). Three parallel specimens were tested for each group. Compressive strengths at 3, 7,  and 28 d were measured using a universal testing machine, and pore structure characteristics were determined by mercury intrusion porosimetry, serving as core evaluation indicators.

Results and Discussion The experimental results showed that both modifiers could improve the water resistance of MKPC, but optimal dosages differed. With 5% silica fume content, the best performance was achieved. Under this condition, the strength after 7 d of water curing increased by 32% compared with the baseline group, and the strength attenuation reduced from 45% to 18%. The modification effectiveness was more pronounced when the nano-silica content was 1%, with the 7 d water-cured strength reaching 48. 2 MPa. This represented an increase of 57% over the baseline group and even exceeded the strength of air-cured specimens (45.6 MPa) at the same curing age, thus breaking the strength retrogression trend. Pore structure tests showed that the total porosity of the 1% nano-silica sample decreased to 12.3% (41% lower than that of the baseline group), indicating superior pore refinement effectiveness. Through pore structure analysis, X-ray diffraction analysis, and scanning electron microscope observation, the microscopic mechanism behind the improved water resistance of MKPC was further revealed. The total porosity of MKPC modified by adding 1% nano-silica was 27.26% after water curing for 7 d, and the proportion of large pores (>1 000 nm) was reduced by 4.42% compared with that of adding 5% silica fume.

Conclusion Silica fume can fill the internal pores of MKPC, while nano-silica promotes hydration via a nucleation effect and physically refines the pore structure. Optimal dosages are identified as 1% nano-silica and 5% silica fume, with the former exhibiting better performance. This study clarifies the parameters and mechanisms of modification, resolves the water-resistance issue of MKPC, and provides theoretical and technical support for its underwater application. The research findings also provide practical guidance for the application of MKPC in water environments. The optimization of Mg/P ratio and the addition of micro-nano silica effectively improve the compressive strength and pore structure of MKPC, resulting in excellent water resistance.

Keywords:magnesium potassium phosphate cement; water resistance; silica fume; nano-silica; pore structure


参考文献(References)

[1]毛敏. 磷酸镁水泥耐水性机理与改性研究[D]. 重庆:重庆大学,2012.

MAO M. Study on water resistance mechanism and modification of magnesium phosphate cement[D]. Chongqing: Chongqing University,2012.

[2]杨行,熊复慧,张恒,等. 磷酸镁水泥耐水性研究进展[J]. 水利科学与寒区工程,2023,6(12):7-13.

YANG H, XIONG F H, ZHANG H, et al. Research progress on water resistance of magnesium phosphate cement[J]. Hydro Science and Cold Zone Engineering,2023,6(12):7-13.

[3]韩建博. 磷酸盐快补材料的耐水性研究[D]. 沈阳:沈阳建筑大学,2016.

HAN J B. Experimental study on water resistance of phosphate quick repair material[D]. Shenyang: Shenyang Jianzhu University,2016.

[4]陈玥,房琦,肖炳斐,等. 磷酸镁水泥耐水性的影响因素及其改善:研究进展[J]. 科技通报,2020,36(11):1-7.

CHEN Y, FANG Q, XIAO B F, et al. Water resistance and improvement of magnesium phosphate cement: research progress[J]. Bulletin of Science and Technology,2020,36(11):1-7.

[5]姜自超,丁建华,张时豪,等. 磷酸镁水泥耐水性研究进展[J]. 当代化工,2016,45(12):2872-2875.

JIANG Z C, DING J H, ZHANG S H, et al. Research progresses in water resistance of magnesium phosphate cement[J]. Contemporary Chemical Industry,2016,45(12):2872-2875.

[6]刘俊霞,燕依梦,海然,等 . 磷酸镁水泥及其修补砂浆耐水性研究进展[J]. 水利水电科技进展,2023,43(3):94-100.

LIU J X, YAN Y M, HAI R, et al. Research progress on water resistance of magnesium phosphate cement and its repair mortar[J]. Advances in Science and Technology of Water Resources,2023,43(3):94-100.

[7]曹永敏,王翔,张兴福,等. 改性剂提高氯氧镁材料性能的研究[J]. 新型建筑材料,2001,28(6):36-37.

CAO Y M, WANG X, ZHANG X F, et al. Study on improving the properties of magnesium oxychloride materials with modifiers[J]. New Building Materials,2001,28(6):36-37.

[8]常远. 磷酸镁水泥耐水性及抗钢筋锈蚀性能研究[D]. 长沙:湖南大学,2014.

CHANG Y. Study on water resistance and corrosion resistance of magnesium phosphate cement[D]. Changsha: Hunan University,2014.

[9]ZHANG S H, YUAN Q, LI Q Y, et al. Microstructural characteristics of bonding interfacial transition zone of concrete and magnesium ammonium phosphate cement[J]. Journal of Building Engineering,2023,76:107208.

[10]DIAZ C, CAU D C, ANTONUCCI P, et al. Chemical degradation of magnesium potassium phosphate cement pastes during leaching by demineralized water: experimental investigation and modeling[J]. Cement and Concrete Research,2024,178:107456.

[11]ABDELRAZIG B E I, SHARP J H, EL-JAZAIRI B. The chemical composition of mortars made from magnesia-phosphate cement[J]. Cement and Concrete Research,1988,18(3):415-425.

[12]YANG Q, ZHU B, WU X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Materials and Structures,2000,33(4):229-234.

[13]丁铸,李宗津. 早强磷硅酸盐水泥的制备和性能[J]. 材料研究学报,2006,20(2):141-147.

DING Z, LI Z J. High early strength magnesium phosphosilicate cement[J]. Chinese Journal of Materials Research,2006,20(2):141-147.

[14]WAGH A, JEONG S Y, SINGH D. High strength phosphate cement using industrial byproduct ashes[J]. Engineering,Environmental Science, Materials Science. 1997:542-553.

[15]LI J Q, LI G Z, YU Y Z. The influence of compound additive on magnesium oxychloride cement/urban refuse floor tile[J]. Construction and Building Materials,2008,22(4):521-525.

[16]秦继辉,钱觉时,宋庆,等. 磷酸镁水泥的研究进展与应用[J]. 硅酸盐学报,2022,50(6):1592-1606.

QIN J H, QIAN J S, SONG Q, et al. Research progress on magnesium phosphate cement[J]. Journal of the Chinese Ceramic Society,2022,50(6):1592-1606.

[17]李东旭,李鹏晓,冯春花. 磷酸镁水泥耐水性的研究[J]. 建筑材料学报,2009,12(5):505-510.

LI D X, LI P X, FENG C H. Research on water resistance of magnesium phosphate cement[J]. Journal of Building Materials,2009,12(5):505-510

[18]谢夫林. 磷酸镁水泥砂浆耐久性能及复合改性试验研究[D]. 西安:长安大学,2023.

XIE F L. Experimental study on durability and composite modification of magnesium phosphate cement mortar[D]. Xi' an:Changan University,2023.

[19]FENG H, ZHU P F, GUO A F, et al. Assessment of the mechanical properties and water stability of nano-Al2O3 modified high ductility magnesium potassium phosphate cement-based composites[J]. Materials Today Communications,2022,30:103179.

[20]ZHANG G S, WANG Q, LI Y, et al. Microstructure and micromechanical properties of magnesium phosphate cement[J]. Cement and Concrete Research,2023,172:107227.

[21]HAQUE M A, CHEN B, LI S J. Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume[J]. Journal of Cleaner Production,2022,369:133347.

[22]OSHANI F, ALLAHVERDI A, KARGARI A, et al. Effect of preparation parameters on properties of metakaolin-based geopolymer activated by silica fume-sodium hydroxide alkaline blend[J]. Journal of Building Engineering,2022,60:104984.

[23]郭永红,周琛鸿,李绪萍,等. 硅灰对磷酸镁水泥基注浆材料早期力学性能及微观结构的影响[J]. 新型建筑材料,2024,51(1):103-107,113.

GUO Y H, ZHOU C H, LI X P, et al. Effects of silica fume on early mechanical properties and microstructure of magnesium phosphate cement-based grouting materials[J]. New Building Materials,2024,51(1):103-107,113

[24]张朝阳,蔡熠,孔祥明,等 . 纳米 C-S-H 对水泥水化、硬化浆体孔结构及混凝土强度的影响[J]. 硅酸盐学报,2019,47(5):585-593.

ZHANG C Y, CAI Y, KONG X M, et al. Influence of nano C-S-H on cement hydration, pore structure of hardened cement pastes and strength of concrete[J]. Journal of the Chinese Ceramic Society,2019,47(5):585-593.

[25]SANCHEZ F, SOBOLEV K. Nanotechnology in concrete:a review[J]. Construction and Building Materials,2010,24(11):2060-2071.

[26]张浩. 纳米二氧化硅改性MPC界面粘结及抗Cl-侵蚀性能研究[D]. 沈阳:沈阳建筑大学,2023.

ZHANG H. Study on interface bonding and Cl- erosion resistance of MPC modified by nano-silica[D]. Shenyang:Shenyang Jianzhu University,2023.

[27]SUN H Q, SUN X C, KANG S X, et al. New magnesium cement optimized in MgO-K2HPO4-SiO2 system and its hardening performance[J]. Construction and Building Materials,2024,446:137942