电子科技大学 材料与能源学院,四川 成都 610000
胡潇然,蒋龙太,姚鉴文,等 . 聚偏氟乙烯压电粉体改性方法及其在柔性可穿戴传感器件领域的应用[J]. 中国粉体技术,2026,32(1):1-10.
HU Xiaoran, JIANG Longtai, YAO Jianwen, et al. Modification methods of polyvinylidene fluoride-based piezoelectric powder and its application in flexible wearable sensor devices[J]. China Powder Science and Technology,2026,32(1):1−10.
DOI:10.13732/j.issn.1008-5548.2026.01.002
收稿日期:2024-12-23,修回日期:2025-12-15,上线日期:2025-12-25。
基金项目:国家重点研发计划课题,编号:2021YFB2401902;四川省自然科学基金项目,编号:2024NSFSC0252。
第一作者:胡潇然(1989—),男,副研究员,博士,硕士生导师,获青山湖材料基因工程青年科学家奖、小米青年学者,研究方向为智能传感技术。E-mail:Huxiaoran@uestc. edu. cn。
摘要:【目的】为了使聚偏氟乙烯(polyvinylidene fluoride,PVDF)更好地应用于可穿戴电子领域,分析提高 PVDF粉体压电系数 d33的方法,以推动改性 PVDF 粉体在可穿戴传感中的应用。【研究现状】综述利用化学共聚和物理共混手段对PVDF进行改性的方法,在化学共聚方面,主要通过偏氟乙烯与三氟乙烯、六氟丙烯等单体进行共聚,利用空间位阻诱导偶极取向提高PVDF粉体压电系数d33;在物理共混方面,主要通过向PVDF基体中引入钛酸钡、锆钛酸铅、氧化锌等具有高压电系数d33的纳米颗粒或陶瓷粉体提高PVDF粉体压电系数d33;此外,通过3D打印、静电纺丝、高压极化等工艺也可进一步提高PVDF粉体压电系数d33;探讨基于改性PVDF粉体制备的柔性可穿戴传感器件的应用领域。【结论与展望】提出通过化学共聚、物理共混及先进加工工艺的协同优化,可有效提升PVDF粉体的压电系数d33并实现功能集成,为开发高性能 PVDF基柔性传感器奠定了材料基础;认为通过 PVDF粉体压电系数d33的提高,具有高压电性的 PVDF基多模态柔性可穿戴传感器在运动监测、健康管理等方面具有巨大的潜力。
关键词:聚偏氟乙烯;柔性可穿戴传感器;掺杂改性;复合材料;压电系数d33
Significance This review summarizes methods for enhancing the piezoelectric coefficient d33 of polyvinylidene fluoride (PVDF) powder through strategies such as chemical copolymerization and physical blending, and discusses the application fields of flexible wearable sensor devices fabricated from the modified powder.
Progress PVDF with piezoelectric properties enables the mutual conversion of mechanical and electrical signals. Its unique structural flexibility allows it to conform to the dynamic curvature of human skin, enabling the detection of physiological signals and demonstrating great potential in wearable electronics. However, its relatively low piezoelectric coefficient d33 results in low sensitivity and signal-to-noise ratio in wearable devices. Therefore, researchers have focused on improving the d33 of PVDF powder by introducing specific monomers via chemical copolymerization or incorporating piezoelectric ceramics and nanofillers via physical blending. Furthermore, the introduction of functional fillers not only improves the piezoelectric performance of PVDF but also endows the composites with enhanced flexibility, antibacterial properties, and electromagnetic shielding capability.
Conclusions and Prospects Currently, the piezoelectric coefficient d33 of PVDF powder is primarily improved through chemical copolymerization and physical blending. In chemical copolymerization, vinylidene fluoride is mainly copolymerized with monomers such as trifluoroethylene and hexafluoropropylene, where steric hindrance is utilized to promote dipole orientation, thereby increasing d33. In physical blending, nanoparticles or ceramic powders with high d33, such as BaTiO3, PZT, and ZnO, are introduced into the PVDF matrix to enhance the d33 of PVDF powder. Additionally, processes such as 3D printing, electrospinning, and high-voltage poling can further improve the d33 of PVDF powder. With the increase in d33, PVDF-based multimodal flexible wearable sensors exhibit considerable potential in motion monitoring, health management, and related fields.
Keywords:polyvinylidene fluoride; flexible wearable sensor; doping modification; composites; piezoelectric coefficient d33
[1]ZHANG L W, LI S F, ZHU Z W, et al. Recent progress on structure manipulation of poly(vinylidene fluoride)-based ferroelectric polymers for enhanced piezoelectricity and applications[J]. Adv Funct Mater,2023,33(38):2301302.
[2]DUAN L Y, D’HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application[J]. Progress in Materials Science,2020,114:100617.
[3]LIU X H, MIAO J L, FAN Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications[J]. Advanced Fiber Materials,2022,4(3):361-389.
[4]LI N, GAO S, LI Y, et al. Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range[J]. Nano Research,2023,16(5):7583-7592.
[5]CUI X Q, ZHENG J H, HUANG Y C, et al. MXene/MWCNTs-based capacitive pressure sensors combine high sensitivity and wide detection range for human health and motion monitoring[J]. Sensors and Actuators A: Physical,2024,379:115858.
[6]MENG K Y, XIAO X, WEI W X, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials,2022,34(21): e2109357.
[7]DAS MAHAPATRA S, MOHAPATRA P C, ARIA A I, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials[J]. Advanced Science,2021,8(17):2100864.
[8]WU L K, JIN Z N, LIU Y L, et al. Recent advances in the preparation of PVDF-based piezoelectric materials[J]. Nanotechnology Reviews,2022,11(1):1386-1407.
[9]MAHALE B, KUMAR N, DE A, et al. A comparative study of energy harvesting performance of polymer-piezoceramic composites fabricated with different piezoceramic constituents[J]. International Journal of Energy Research,2021,45(2):2694-2708.
[10]COSTA C M, CARDOSO V F, MARTINS P, et al. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications[J]. Chemical Reviews,2023,123(19):11392-11487.
[11]BARBOSA J C, CORREIA D M, GONÇALVES R, et al. Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries[J]. Journal of Colloid and Interface Science,2021,582:376-386.
[12]KUMAR A, SAINI D, MANDAL D. 3D printed ferroelectret with giant piezoelectric coefficient[J]. Applied Physics Letters,2022,120(18):182901.
[13]JIN Z N, LEI D, WANG Y, et al. Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films[J]. Nanotechnology Reviews,2021,10(1):1009-1017.
[14]QIN B, DING G T, YANG X Y, et al. Ultrahigh piezoelectric coefficients achieved by tailoring the sequence and nanodomain structure of P(VDF-TrFE)[J]. Advanced Materials,2025,37(27): e2502708.
[15]SUN Q Q, XIA W M, LIU Y, et al. The dependence of acoustic emission performance on the crystal structures, dielectric,ferroelectric, and piezoelectric properties of the P(VDF-TrFE) sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2019,67(5):975-983.
[16]HU X P, YU S H, CHU B J. Increased effective piezoelectric response of structurally modulated P(VDF-TrFE) film devices for effective energy harvesters[J]. Materials & Design,2020,192:108700.
[17]DU W D, WANG S X, CHI H Z, et al. Evaluating head impact intensities and accelerations using flexible wearable sensors for traumatic brain injury assessment[J]. Sensors and Actuators A: Physical,2024,373:115443.
[18]LIU Y L, TONG W S, WANG L C, et al. Phase separation of a PVDF-HFP film on an ice substrate to achieve self-polarisation alignment[J]. Nano Energy,2023,106:108082.
[19]HAN Z B, LIU Y, CHEN X, et al. Enhanced piezoelectricity in poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymers with mixed ferroelectric phases[J]. Macromolecules,2022,55(7):2703-2713.
[20]CHEN X, QIN H C, QIAN X S, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science,2022,375(6587):1418-1422.
[21]HUANG X Y, JIANG P K. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications[J]. Advanced Materials,2015,27(3):546-554.
[22]SHI K J, XIAO H Y, TALEB S, et al. High-performance of piezoelectric and ferroelectric PVDF-TrFE based composites engineered by MWCNTs@BaTiO3 heterostructure[J]. Small,2025,21(45): e08878.
[23]HUANG Z X, LI L W, HUANG Y Z, et al. Self-poled piezoelectric polymer composites via melt-state energy implantation[J]. Nature Communications,2024,15(1):819.
[24]SHARMA V B, PRAJESH N, SHARMA V, et al. Lead-free compositional engineering to induce polar phase in polymeric piezoelectric host for energy harvesting devices[J]. ACS Applied Electronic Materials,2024,6(6):4532-4538.
[25]LI H, LIM S. Boosting performance of self-polarized fully printed piezoelectric nanogenerators via modulated strength of hydrogen bonding interactions[J]. Nanomaterials,2021,11(8):1908.
[26]LI H, SONG H, LONG M J, et al. Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors[J]. Nanoscale,2021,13(4):2542-2555.
[27]LIU L M, ZHANG H J, ZHOU S Y, et al. Boosting the piezoelectric response and interfacial compatibility in flexible piezoelectric composites via DET-doping BT nanoparticles[J]. Polymers,2024,16(6):743.
[28]SU Y J, LI W X, YUAN L, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring[J]. Nano Energy,2021,89:106321.
[29]ZHANG C, SUN H J, ZHU Q Y. Study on flexible large-area poly(vinylidene fluoride)-based piezoelectric films prepared by extrusion-casting process for sensors and microactuators[J]. Materials Chemistry and Physics,2022,275:125221.
[30]MAHANTY B, GHOSH S K, JANA S, et al. ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring[J]. Sustainable Energy & Fuels,2021,5(17):4389-4400.
[31]LI X X, JI D X, YU B X, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345.
[32]SALAMA M, HAMED A, NOMAN S, et al. Boosting piezoelectric properties of PVDF nanofibers via embedded graphene oxide nanosheets[J]. Scientific Reports,2024,14(1):16484.
[33]ZHANG J J, WANG X Q, CHEN X H, et al. Piezoelectricity enhancement in graphene/polyvinylidene fluoride composites due to graphene-induced α → β crystal phase transition[J]. Energy Conversion and Management,2022,269:116121.
[34]SULTANA P, KHAN M, MANDAL D, et al. Investigation of the effect of atmospheric plasma treatment in nanofiber and nanocomposite membranes for piezoelectric applications[J]. Membranes,2023,13(2):231.
[35]ALEKSANDROVA M, TSANEV T, KADIKOFF B, et al. Piezoelectric elements with PVDF-TrFE/MWCNT-aligned composite nanowires for energy harvesting applications[J]. Crystals,2023,13(12):1626.
[36]BADATYA S, KUMAR A, SRIVASTAVA A K, et al. Flexible interconnected Cu-Ni nanoalloys decorated carbon nanotube-poly(vinylidene fluoride) piezoelectric nanogenerator[J]. Advanced Materials Technologies,2022,7(7):2101281.
[37]ZENG B W, YANG J L, NI Z, et al. Improved pyroelectric performances of functionally graded graphene nanoplatelet reinforced polyvinylidene fluoride composites: experiment and modelling[J]. Composites Part A: Applied Science and Manufacturing,2024,176:107883.
[38]WANG Y B, ZHU M M, WEI X D, et al. A dual-mode electronic skin textile for pressure and temperature sensing[J]. Chemical Engineering Journal,2021,425:130599.
[39]LI Z H, CHEN J W, WEN A, et al. Temperature sensitivity of flexible Co3O4/PVDF dielectric nanocomposites[J]. Journal of Electronic Materials,2022,51(9):5032-5041.
[40]PHADKULE S S, SARMA S. High-performance flexible temperature sensor from hybrid nanocomposite for continuous human body temperature monitoring[J]. Polymer Composites,2023,44(2):1381-1391.
[41]SANG M, LIU S, LI W W, et al. Flexible polyvinylidene fluoride(PVDF)/MXene(Ti3C2Tx)/polyimide(PI) wearable electronic for body monitoring, thermotherapy and electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2022,153:106727.
[42]JIA L, DING X, SUN J, et al. A controllable gradient structure of hydrophobic composite fabric constructed by silver nanowires and polyvinylidene fluoride microspheres for electromagnetic interference shielding with low reflection[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106884.
[43]SANG M, WANG S, LIU S, et al. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection[J]. ACS Applied Materials & Interfaces,2019,11(50):47340-47349.
[44]PAI Y H, XU C, ZHU R Y, et al. Piezoelectric-augmented thermoelectric ionogels for self-powered multimodal medical sensors[J]. Advanced Materials,2025,37(6):2414663.
[45]HE Q, HEIDARI H, ZEZE D A, et al. Highly sensitive flexible pressure sensor based on PVDF-TrFE-BaTiO3 piezoelectric nanofibers[J]. IEEE Sensors Letters,2024,8(8):1-4.