李卫平,余俊,叶辉,等. ZnO纳米粉体的液相掺杂制备策略与应用[J]. 中国粉体技术,2025,31(1):22-34.
LI Weiping, YU Jun, YE Hui, et al. Liquid‑phase preparation strategies and applications of doped ZnO nanopowders[J]. China Powder Science and Technology,2025,31(1):22-34.
DOI:10.13732/j.issn.1008-5548.2025.01.003
收稿日期:2024-07-30,修回日期:2024-09-10,上线日期:2024-10-12。
基金项目:国家重点研发计划项目,编号:2023YFB3408200;国防基础科研项目,编号: JCKY2021204B146。
第一作者简介:李卫平(1972—),女,教授,博士,博士生导师,研究方向为功能涂层材料。E-mail:liweiping@buaa. edu. cn。
摘要:【目的】探讨制备结构形貌可控、导电性良好的ZnO纳米粉体策略。【研究现状】掺杂ZnO纳米粉体的液相制备策略,包括两步合成法前驱体转化和一步合成法原位掺杂,两步合成法包括沉淀法、溶胶‒凝胶法、恒流电解法等,一步合成法包括高压加热法、常压加热法等;总结ZnO纳米粉体掺杂导电机制,以及ZnO纳米粉体在透明导电氧化物膜、抗静电复合材料、防静电热控涂层方面的应用。【结论与展望】认为离子掺杂已成为调控晶体材料性能的有效手段,通过有效的掺杂可以对材料的性能进行连续地调控,从而获得适应具体应用场景的高性能材料;提出导电掺杂能拓宽ZnO应用,应探索制备大批量ZnO纳米粉体材料的液相掺杂策略,形成液相路线对于ZnO纳米颗粒的形貌和导电性的可调,提高液相法 杂质离子的掺杂效率、掺杂均匀性及批次稳定性,形成分子乃至原子层面对于液相合成过程和掺杂元素分布的有效分析手段,深入探讨合成和掺杂机制。
关键词:ZnO纳米粉体;掺杂;液相;透明导电氧化物;热控涂层
Significance Due to its wide bandgap, excellent optoelectronic properties, ease of preparation, low cost, and environmental friendliness, nano-ZnO has been extensively researched and applied. Conductive-doped nano-ZnO, with its advantages of optical transparency, high conductivity, and low cost, has emerged as a potential alternative to indium tin oxide (ITO) and holds great promise in fields such as antistatic coatings and optoelectronic films. Synthesizing nano-ZnO materials with good structural morphology, high conductivity, and optical transparency is crucial for leveraging ZnO’s application potential.
Progress Intrinsic ZnO exhibits n-type conductivity due to its inherent defects. However, its poor conductivity limits its application in antistatic materials. The thermodynamically stable wurtzite phase of ZnO can be n-doped by substituting Zn with Al or Ga, which has been proven to significantly increase the carrier concentration in ZnO, thereby enhancing its optoelectronic properties. The review discusses the liquid-phase preparation strategies for doped ZnO nanopowders, including the two-step synthesis, i. e. , precursor conversion method and the one-step synthesis, i. e. , in-situ doping method. The precursor conversion method involves converting mixed precursors into doped ZnO through high-temperature calcination, though the hightemperature process is hard to control. In contrast, the in-situ doping method allows for the one-step preparation of ZnO nanopowders through hydrothermal, solvothermal methods, or water-zinc chemical reactions under normal pressure, without the need for high-temperature post-treatment. By analyzing the nucleation and growth conditions of ZnO and the chemical behavior of impurity ions, morphology control and doping can be achieved, offering the advantage of easy scalability.
Conclusions and Prospects Al and Ga doping can effectively enhance the optoelectronic properties of ZnO. Nano-ZnO materials with unique structural morphologies help leverage the performance advantages of ZnO. For instance, one-dimensional nanomaterials with a certain aspect ratio are conducive to forming conductive networks in coatings, enhancing antistatic performance. The in-situ liquid-phase doping strategy offers controllability over the morphology and performance of the powder particles. However, further in-depth research at the microscopic level is required to clarify the doping mechanism in liquid-phase reactions. By combining analytical techniques such as XRD, XPS, ICP-OES, SEM, and TEM, the thermodynamic and kinetic behavior of ions, molecules, and atoms can be explained, and the relationship between the chemical processes in solution and the physical properties of the resulting crystals and their intrinsic defects can be clarified. This will provide guidance for the preparation and performance control of nanopowder materials and broaden the application scope of ZnO nanoparticles.
Keywords:ZnO nanopowder; doping; liquid phase; transparent conductive oxide; thermal control coating
[1]GOYAL M, SINGH K, BHATNAGAR N. Conductive polymers: a multipurpose material for protecting coating [J]. Progress in Organic Coatings,2024,187:108083.
[2]ORASUGH J T, TEMANE L T, RAY S S. Nanocellulose-based conductive composites: a review of systems for electromagnetic interference shielding applications [J]. International Journal of Biological Macromolecules,2024,277:133891.
[3]HSIAO S-M, CHENG W-T. Preparation and electrical conductivity of metal and photosensitive polymer composite film[J].Progress in Organic Coatings,2019,132:86-94.
[4]NISTICÒ R, D’ARIENZO M, DI CREDICO B, et al. The role of inorganic fillers in electrostatic discharge composites[J].Inorganics,2022,10(12):222.
[5]HAMDI S, SMAOUI H, GUERMAZI S, et al. Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping [J]. Inorganic Chemistry Communications,2022,144:109819.
[6]WEN H, WENG B, WANG B, et al. Advancements in transparent conductive oxides for photoelectrochemical applications[J].Nanomaterials,2024,14(7):591.
[7]DAVIS K, YARBROUGH R, FROESCHLE M, et al. Band gap engineered zinc oxide nanostructures via a sol‒gel synthesis of solvent driven shape-controlled crystal growth [J]. RSC Advances,2019,9(26):14638-14648.
[8]SAXENA N, SHARMA R, HUSSAIN A, et al. Effect of the triple (Al, Ga, In) doping in ZnO nanostructures on its transmission, conductivity, and stability for TCO applications [J]. Materials Letters,2022,306:130886.
[9]HONG M-H, CHOI H, KIM Y, et al. Thermoelectric behaviors of ZnO mesoporous thin films affected by strain induced from the different dopants radii (Al, Ga, and In)[J]. Applied Physics Letters,2021,119(19): 193902.
[10]BO R, ZHANG F, BU S, et al. One-step synthesis of porous transparent conductive oxides by hierarchical self-assembly of aluminum-doped ZnO nanoparticles [J]. ACS Applied Materials & Interfaces,2020,12(8):9589-9599.
[11]SERIER H, DEMOURGUES A, GAUDON M. Investigation of Ga substitution in ZnO powder and opto-electronic properties [J]. Inorganic Chemistry,2010,49(15):6853-6858.
[12]PIRAS A, OLLA C, REEKMANS G, et al. Photocatalytic performance of undoped and Al-doped ZnO nanoparticles in the degradation of Rhodamine B under UV-visible light: the role of defects and morphology [J]. International Journal of Molecular Sciences,2022,23(24):15459.
[13]HEUER-JUNGEMANN A, FELIU N, BAKAIMI I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles[J]. Chemical Reviews,2019,119(8):4819-4880.
[14]LI J J, DEEPAK F L. In situ kinetic observations on crystal nucleation and growth [J]. Chemical Reviews,2022,122(23):16911-16982.
[15]VAN EMBDEN J, GROSS S, KITTILSTVED K R, et al. Colloidal approaches to zinc oxide nanocrystals [J]. Chemical Reviews,2023,123(1):271-326.
[16]DHIMAN P, RANA G, KUMAR A, et al. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review [J]. Environmental Chemistry Letters,2022,20(2):1047-1081.
[17]RUTHERFORD D, REMES Z, KOLAROVA K, et al. Enhanced antimicrobial and photocatalytic effects of plasma-treated gallium-doped zinc oxide [J]. Applied Surface Science,2024,655:159567.
[18]DU S F, LIU H D, CHEN Y F. Large-scale preparation of porous ultrathin Ga-doped ZnO nanoneedles from 3D basic zinc carbonate superstructures [J]. Nanotechnology,2009,20(8):085611.
[19]ZHENG J, ZHAO S, LU L, et al. Homogeneous precipitation synthesis and conductive properties of Ga-doped ZnO nanopowders [J]. Journal of Materials Science: Materials in Electronics,2015,26(7):5433-5439.
[20]ARYA S, MAHAJAN P, MAHAJAN S, et al. Review-influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles [J]. ECS Journal of Solid State Science and Technology,2021,10(2):023002.
[21]ALAMDARI S, GHAMSARI M S, TAFRESHI M J. Optimization of gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications [J]. Ceramics International,2020,46(4):4484-4492.
[22]VLADUT C M, MOCIOIU O C, SOARE E M. Coinage metals doped ZnO obtained by sol-gel method:a brief review [J].Gels,2023,9(5):424.
[23]BILGE S, DOGAN-TOPAL B, CEL A, et al. Recent advances in flower-like nanomaterials: synthesis, characterization,and advantages in gas sensing applications [J]. Trends in Analytical Chemistry,2022,153:116638.
[24]TAKAKI T, KUROSAWA K, RAZAVI H, et al. Electrolytic synthesis of Al-doped ZnO nanopowders with low electrical resistivity [J]. Journal of the American Ceramic Society,2010,93(10):3088-3091.
[25]MEDHI R, MARQUEZ M D, LEE T R. Visible-light-active doped metal oxide nanoparticles: review of their synthesis,properties, and applications [J]. ACS Applied Nano Materials,2020,3(7):6156-6185.
[26]HOWARD D P, MARCHAND P, JOHNSON I D, et al. Conducting Al and Ga-doped zinc oxides:rapid optimisation and scale-up [J]. Journal of Materials Chemistry A,2016,4(33):12774-12780.
[27]HOWARD D P, MARCHAND P, MCCAFFERTY L, et al. High-throughput continuous hydrothermal synthesis of transparent conducting aluminum and gallium co-doped zinc oxides [J]. ACS Combinatorial Science,2017,19(4):239-245.
[28]DE ROO J. Chemical considerations for colloidal nanocrystal synthesis [J]. Chemistry of Materials,2022,34(13):5766-5779.
[29]LIU Y S, GAO W. Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions [J]. Journal of Alloys and Compounds,2015,629:84-91.
[30]GUHA RAY P, DAS M, WAN M, et al. Surfactant and catalyst free facile synthesis of Al-doped ZnO nanorods:an approach towards fabrication of single nanorod electrical devices [J]. Applied Surface Science,2020,512:145732.
[31]PINEDA-HERNáNDEZ G, ESCOBEDO-MORALES A, PAL U, et al. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures [J]. Materials Chemistry and Physics,2012,135(2):810-817.
[32]ARELLANO-CORTAZA M, RAMIREZ-MORALES E, PAL U, et al. pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities[J]. Ceramics International,2021,47(19):27469-27478.
[33]GAFFURI P, APPERT E, CHAIX-PLUCHERY O, et al. The path of gallium from chemical bath into ZnO nanowires:mechanisms of formation and incorporation [J]. Inorganic Chemistry,2019,58(15):10269-10279.
[34]COSSUET T, APPERT E, THOMASSIN J-L, et al. Polarity-dependent growth rates of selective area grown ZnO nanorods by chemical bath deposition [J]. Langmuir,2017,33(25):6269-6279.
[35]RANA A U H S, SHAIKH S F, AL-ENIZI A M, et al. Intrinsic control in defects density for improved ZnO nanorod-based UV sensor performance [J]. Nanomaterials,2020,10(1):142.
[36]JOO J, CHOW B Y, PRAKASH M, et al. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis [J]. Nature Materials,2011,10(8):596-601.
[37]VERRIER C, APPERT E, CHAIX-PLUCHERY O, et al. Effects of the pH on the formation and doping mechanisms of ZnO nanowires using aluminum nitrate and ammonia [J]. Inorganic Chemistry,2017,56(21):13111-13122.
[38]BAN H, CHOI Y, LEE H G, et al. ZnMgO Nanoparticles via ultrasonic-assisted synthesis for electron transport layer in inp-based QD-LEDs [J]. ACS Applied Nano Materials,2024,7(10):11274-11284.
[39]WOJNAROWICZ J, CHUDOBA T, LOJKOWSKI W. A review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies [J]. Nanomaterials,2020,10(6):1086.
[40]WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications [J].RSC Advances,2020,10(70):42838-42859.
[41]PARK J W, KANG B H, KIM H J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics [J]. Advanced Functional Materials,2020,30(20):1904632.
[42]JANG E, JANG H. Review: quantum dot light-emitting diodes [J]. Chemical Reviews,2023,123(8):4663-4692.
[43]QASEM A, HASSAN A A, AL-NAMI S Y, et al. Effective role of vacuum annealing in improving structural, optical, and electrical properties of SiO2/Ag/ZnO multilayers deposited by RF sputtering for optoelectronic applications [J]. PhysicaScripta,2023,98(1):015825.
[44]NISHI Y, KASAI Y, SUZUKI R, et al. Gallium-doped zinc oxide nanoparticle thin films as transparent electrode materials with high conductivity [J]. ACS Applied Nano Materials,2020,3(10):9622-9632.
[45]KOSIŃSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites:a review[J].Polymer Testing,2022,112:107649.
[46]GREEN N W, KIM W, LOW N, et al. Electrostatic discharges from conductive thermal coatings [J]. IEEE Transactions on Plasma Science,2019,47(8):3759-3765.
[47]SENGUN P, KESIM M T, CAGLAR M, et al. Characterization of designed, transparent and conductive Al doped ZnO particles and their utilization in conductive polymer composites [J]. Powder Technology,2020,22:374214.
[48]李留东,董存峰,杨茂伟,等. 抗静电涂料的抗静电机理探讨[J]. 涂料技术与文摘,2010,31(11):38-40.
LI L D, DONG C F, YANG M W, et al. Antistatic mechanism discussion of antistatic coatings [J]. Coatings Technology,2010,31(11):38-40.
[49]AL-SALEH M H, SUNDARARAJ U. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon,2009,47(1):2-22.
[50]CHEN K, XIONG C X, LI L B, et al. Conductive mechanism of antistatic poly(ethylene terephthalate)/ZnO composites[J]. Polymer Composites,2009,30(2):226-231.
[51]张东,张有玮,张家强,等. 低吸收高发射热控涂层及填料发展展望[J]. 新技术新工艺,2021(5):1-6.
ZHANG D, ZHANG Y W, ZHANG J Q, et al. Development prospeet of low absorption and high emissivity thermal control coatings and pigments [J]. New Technology & New Process,2021(5):1-6.
[52]王旭东,何世禹,杨德庄,等. 美国用于空间站辐射器中的热控涂层[J]. 宇航材料工艺,2002(1):12-18.
WANG X D, HE S Y, YANG D Z, et al. Thermal control coatings for radiators on space stations of USA [J]. Aerospace Materials & Technology,2002(1):12-18.
[53]曾一兵,张廉正,胡连成. 俄罗斯空间有机热控涂层发展的现状及动向[J]. 宇航材料工艺,1999(6):57-59.
ZENG Y B, ZHANG L Z, HU L C. Current situation and trend of development of organic thermal control coatings in Russian space [J]. Aerospace Materials & Technology,1999(6):57-59.
[54]向艳超,高鸿,文明,等. 航天器热控材料及应用研究进展[J]. 材料导报,2022,36(22):68-73.
XIANG Y C, GAO H, WEN M, et al. Review of spacecraft thermal control materials and applications[J]. Materials Reports,2022,36(22):68-73.
[55]MIKHAILOV M M, NESHCHIMENKO V V, SOKOLOVSKIY A N, et al. Thermal control coatings based on pigments modified with Al2O3nanoparticles[J]. Progress in Organic Coatings,2019,131:340-345.
[56]FUJISHIRO Y, AWANO M, KANZAKI S. Preparation and photoactive characterization of tube-shaped Al-doped ZnO ceramics[J]. MRS Online Proceedings Library,2002,737(1):37.
[57]吕金鹏. Al3+掺杂抗静电改性ZnO颜料制备及其质子辐照效应[D]. 哈尔滨:哈尔滨工业大学,2010.
LÜ J P. Study on antistatic aluminum-doped ZnO pigment and its proton radiation effect [D]. Harbin: Harbin Institute of Technology,2010.
[58]VITALY N. 不同微纳结构ZnO/TiO2/SiO2粉体及其热控涂层辐照损伤效应[D]. 哈尔滨:哈尔滨工业大学,2021.VITALY N. Radiation damage effects of ZnO/TiO2/SiO2powders with diffrent micro-nano structures and thermal control coatings based on them [D]. Harbin: Harbin Institute of Technology,2021.