ISSN 1008-5548

CN 37-1316/TU

2025年31卷  第1期
<返回粉体加工

纳米或超细WC-Co粉体制备过程强化研究进展

Research progress on enhanced preparation process of nano or ultra-fine WC-Co powder


潘 锋1,尚慧俊2,黎亨利3,杜 占4

1. 中国科学院过程工程研究所 介科学与工程全国重点实验室,北京 100190;

2. 北京工业大学 材料科学与工程学院,北京100124;

3. 石河子大学 化学化工学院,新疆 石河子 832003;

4. 中铝环保节能集团有限公司,河北 雄安 050004


引用格式:

潘锋,尚慧俊,黎亨利,等. 纳米或超细WC-Co粉体制备过程强化研究进展[J]. 中国粉体技术,2025,31(1):1-10.

PAN Feng, SHANG Huijun, LI Hengli, et al. Research progress on enhanced preparation process of nano or ultra-fine WC-Co powder[J]. China Powder Science and Technology,2025,31(1):1−10.

DOI:10.13732/j.issn.1008-5548.2025.01.001

收稿日期:2024-06-28,修回日期:2024-10-09,上线日期:2024-10-18。

基金项目:国家自然科学基金项目,编号:22078326、21878305。

第一作者简介:潘锋(1981—),男,工学博士,副研究员,硕士生导师,主要从事流态化及过程强化、超细粉体制备及应用等方面的研究。E-mail: fpan@ipe. ac. cn。


摘要:【目的】总结纳米或超细碳化钨钴(WC-Co)粉体制备过程的研究,解决WC-Co做为热喷涂原料对机械零件的磨损和腐蚀的影响。【研究现状】总结纳米或超细WC-Co制备过程强化、反应路径,以及Co对还原碳化过程的作用等;其中机械作用力强化包括球磨强度的影响、氧化钨原料的影响、反应温度的影响,原子或分子水平强化包括气相化学合成、喷雾转化,气相碳质强化反应过程包括烃类物质、一氧化碳;纳米或超细WC-Co制备过程反应路径包括还原过程、碳化过程; 对还原碳化过程的作用包括Co对氧化钨还原碳化过程具有催化作用、Co影响WC-Co产物粒径、Co含量增加降低碳化温 度、Co促进气态碳源析碳等。【结论与展望】提出WC-Co粉体制备反应路径方面,应深入揭示制备反应路径,应进一步分析缺碳相η物相在制备过程中的作用,对W、 Co、 C扩散的影响机制;认为模拟分析反应过程中还原碳化气与固体原料之间的热量、质量传递过程,可为制备过程进一步优化调控和反应器放大设计奠定理论基础;同时WC-Co粉体热喷涂性能方面,用于机械件的喷涂处理时,应测试涂层的抗磨损和腐蚀性能,反馈调控优化和制备过程。

关键词:硬质合金涂层;纳米或超细WC–Co;技术进展;反应路径

Abstract

Significance Using nano or ultra-fine tungsten carbide cobalt (WC-Co) powder as thermal spray material can effectively solve the wear and corrosion problems in mechanical parts. This paper summarizes and analyzes the research progress on enhancing the preparation process of such powders.

Progress Based on various enhancement methods and approaches, different preparation methods of nano or ultra-fine WC-Co powder are reviewed, and their reaction paths are analyzed. The role of cobalt (Co) in the preparation process of nano or ultrafine WC-Co powder is also discussed. Enhancement technologies for the preparation process mainly include mechanical force enhancement, atomic or molecular-level enhancement, and gas-phase carbon source enhancement. The reaction paths during the preparation process mainly involves two stages: reduction and carbonization. There are three paths:(1) tungsten carbide (WC) and η-phase are formed during carbonization;(2) tungsten trioxide (WO3) is first reduced to tungsten (W), then the η-phase is formed, followed by further carbonization to form WC-Co;(3) the reduction and carbonization process occurs without the formation of the η-phase. During the preparation of nano or ultra-fine WC-Co powder, Co plays the roles of catalysis, promoting carbonization, reducing the carbonization temperature, and decreasing the particle size of the product.

Conclusions and Prospects The preparation and application of nano or ultra-fine WC-Co powder can be further developed in the following areas. The mechanisms of the enhancement process in WC-Co powder preparation and the interaction mechanisms of Co-W-C should be further elucidated. The role of carbon-deficient η-phase in the preparation process remains unclear, and its impact on the diffusion mechanisms of W, Co, and C during preparation needs further analysis. By clarifying these mechanisms, the optimization of the preparation process can be guided, allowing for the control of the free carbon mass content within 0. 2%, and the production of composite powder with particle sizes under 100 nm. Moreover, the heat and mass transfer laws during the reaction process should be further examined. Using fluid simulation software, the heat and mass transfer processes between carbonized gas and solid raw materials in the reaction process can be simulated and analyzed, providing a basis for studying the reaction process mechanisms, optimizing the preparation process, and designing scalable reactors. The thermal spraying properties of composite powders also need to be further studied. It is necessary to apply the ultra-fine WC-Co powder prepared by relevant technical routes to the surface treatment of mechanical parts, testing the wear and corrosion resistance of the resulting coating, and using this performance data to refine the preparation process.

Keywords:cemented carbide coating; nano or ultra-fine WC-Co; technological progress; reaction paths


参考文献(References)

[1]向锦涛. WC/Co基热喷涂粉末与涂层制备及其性能的研究[D]. 长沙:湖南大学,2012.

XIANG J T. Study on preparation and properties of WC/Co-based thermal spray powder and coating[D]. Changsha: Hunan University,2012.

[2]丁彰雄,万文晨,赵辉,等. 热喷涂WC-Co复合涂层的研究现状及展望[J]. 热喷涂技术,2012,4(2):1-5,15.

DING Z X, WAN W C, ZHAO H, et al. Research progress and prospect of WC-Co composite coatings prepared[J]. ThermalSpray Technology,2012,4(2):1-5,15.

[3]KHANN A S, KUMARI S, KANUNGO S, et al. Hard coatings based on thermal spray and laser cladding[J]. International Journal of refractory Metals & Hard Materials,2009,27(2):485-491.

[4]郭圣达. 超细晶WC-Co复合粉短流程制备及其硬质合金的腐蚀行为[D]. 昆明:昆明理工大学,2018.

GUO S D. Short process preparation of ultrafine grained WC-Co composite powder and its corrosion behavior in hard alloys[D]. Kunming: Kunming University of Science and Technology,2018.

[5]HE R G, WANG J Y, HE M, et al. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide[J]. Ceramics International,2018,44(9):1-7.

[6]WU C H. Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide[J].International Journal of Refractory Metals & Hard Materials,2011,29(6):686-691.

[7]张秋和,谢中华,陈树茂,等. 超细碳化钨粉工业生产实践[J]. 中国钨业,2009,24(6):32-34.

ZHANG Q H, XIE Z H, CHEN S M, et al. On the industrial production practice of super-fine carbonization tungsten powder[J]. China Tungsten Industry,2009,24(6):32-34.

[8]CHEN W H, NAYAK P K, LIN H T, et al. Synthesis of nanostructured tungsten carbide via metal-organic chemical vapor deposition and carburization process[J]. International Journal of Refractory Metals & Hard Materials,2014,47(12):44-48.

[9]ZHU M, BAO X Y, YANG X P, et al. A novel method for direct synthesis of WC-Co nanocomposite powder[J]. Metallurgical and Materials Transactions: A. Physical Metallurgy and Materials Science,2011,42A(9):2930-2936.

[10]PAN Y F, XIONG H W, LI Z Y,et al. Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals & Hard Materials,2019,81:127-136.

[11]WANG X L, SONG X Y, LIU X M, et al. Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions[J]. Nanotechnology,2015,26(14):145705-145713.

[12]SHEN T T, XIAO D H, OU X Q, et al. Preparation of ultrafine WC-10Co composite powders by reduction and carbonization[J]. Journal of Central South University,2013,20(8):2090-2095.

[13]LIU W B, SONG X Y, ZHANG J X, et al. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions[J]. International Journal of Refractory Metals & Hard Materials,2009,27(1):115-120.

[14]PARK C, KIM J, KANG S. Effect of cobalt on the synthesis and sintering of WC-Co composite powders[J]. Journal of Alloys and Compounds,2018,76(25):564-571.

[15]LIN H, SUN J C, LI C H, et al. A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk[J]. Journal of Alloys and Compounds,2016,682(15):682,531-536.

[16]MARZIE M, RASOUL S M, BEHZAD S, et al. Acrylamide route for the co-synthesis of tungsten carbide-cobalt nanopowders with additives[J]. Ceramics International ,2016,42(8):9382-9386.

[17]RYU T, SOHN H Y, HWANG K S, et al. Chemical vapor synthesis and characterization of nanosized WC-Co composite powder and post-treatment[J]. Industrial & Engineering Chemistry Research ,2008,47(23):9384-9388.

[18]YANG Q M, YANG J G, YANG H L, et al. Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-HIP[J]. International Journal of Refractory Metals & Hard Materials,2017,62(B):104-109.

[19]YANG Q M, YANG J G, YANG H L, et al. Synthesis of ultrafine WC-Co composite powders under hydrogen atmosphere with in situ carbon via a one-step reduction-carbonization process[J]. International Journal of Applied Ceramic Technology,2017,14(2):220-227.

[20]PAN F, DU Z, LI S F, et al. Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering,2020,28(3):923-932.

[21]YANG Q M, YANG J G, YANG H L, et al. Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources[J]. Metals and Materials International,2016,22(4):663-669.

[22]WANG K F, SUN G D, WU Y D, et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction-carburization process[J]. International Journal of Refractory Metals & Hard Materials,2019,84:104975.

[23]PAN F, LIU J Y, DU Z, et al. Reaction process of WC prepared under a CO atmosphere in a fluidized bed[J]. Industrial & Engineering Chemistry Research,2021,60(1):162-172.

[24]刘铭哲,李斌川,韩庆,等. 超细碳化钨粉末制备工艺研究进展[J]. 稀有金属与硬质合金,2019,47(2):74-81.

LIU M Z, LI B C, HAN Q, et al. Development of preparation process of uitrafine tungsten carbide powder[J]. Rare Metals and Cemented Carbide. 2019,47(2):74-81.

[25]KANERVA U, KARHU M, LAGERBOM J, et al. Chemical synthesis of WC-Co from water-soluble precursors: the effect of carbon and cobalt additions to WC synthesis[J]. International Journal of Refractory Metals and Hard Materials,2016,56:69-75.

[26]WANG X L, SONG X Y, LIU X M, et al. Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions[J]. Nanotechnology,2015,26(14):145705.

[27]ALAN P, WOLFl-DIETER S, RONALD W, et al. Cobalt oxide as a raw material for the production of WC-Co cemented⁃carbides and its advantages for the pressing process[J]. International Journal of Refractory Metals and Hard Materials,2018,72:104-109.

[28]ZHAN W B, WANG H B, LIANG S H, et al. Acceleration effect of cobalt on carburization of tungsten at low temperature[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,732:429-435.

[29]吕健,羊建高,陈颢,等. 喷雾干燥与低温还原碳化法制备纳米晶WC-Co复合粉末[J]. 粉末冶金材料科学与工程,2013,18(6):835-839.

LÜ J, YANG J G, CHEN H, et al. Preparation of nanocrytalline WC-Co composite powder by spray-drying and low temperature reduction-carbonization process[J]. Materials Science and Engineering of Powder Metallurgy,2013,18(6):835-839.

[30]ZHU E, ZHANG J X, GUO S D, et al. Effect of Co on morphology and preparation of in situ synthesis of WC-Co composite powders[J]. Materials Research Express,2019,6(8):086522.

[31]SABAT B, PARAMGURU B, MISHRA B. Reduction of oxide mixtures of (Fe2O3+CuO) and (Fe2O3+Co3O4) by low-temperature hydrogen plasma[J]. Plasma Chemistry and Plasma Processing,2017,37(4):979-995.

[32]HOLGATE M M, SCHOBERL T, HALL S, et al. A novel route for the synthesis of nanocomposite tungsten carbide-cobalt using a biopolymer as a carbon source[J]. Journal of Sol-Gel Science and Technology,2009,49(2):145-149.

[33]NARKIEWICZ U, PODSIADLY M, JEDRZEJEWSKI R, et al. Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials[J]. Applied Catalysis A General,2010,384(1/2):27-35.

[34]尚慧俊,黎亨利,刘家义,等. Co对WO3-Co3O4预还原的影响规律及其产物碳化性能[J]. 化工学报,2022,73(12):5593-5604.

SHANG H J, LI H L, LIU J Y, et al. Effect of Co on the pre-reduction process of WO3-Co3O4 and carbonization performance of its product[J]. Chinese Journal of Chemical Engineering,2022,73(12):5592-5604.