兰永军1a, 张 喆1a, 周志尧1a, 王 紫1a, 孟松松2, 李宏波1
1. 宁夏大学 a.土木与水利工程学院,b.宁夏节水灌溉与水资源调控工程技术研究中心,c.旱区现代农业水资源高效利用教育部工程研究中心,宁夏 银川750021; 2. Department of Civil and Structural Engineering,University of Sheffield,Sheffield S10 2TN, England
兰永军,张喆,周志尧,等. 掺杂硅锰渣和沙漠砂的水泥基复合材料的微观结构和力学性能[J].中国粉体技术,2025,31(2):1-10.
LAN Yongjun,ZHANG Zhe,ZHOU Zhiyao,et al. Microstructure and mechanical properties of cement-based composites doped
with silica manganese slag and desert sand[J].China Powder Science and Technology,2025,31(2):1−10.
DOI:10.13732/j.issn.1008-5548.2025.02.006
收稿日期:2024-05-21,修回日期:2024-07-07,上线日期:2024-11-20。
基金项目:国家自然科学基金项目,编号 :52069025;宁夏自然科学基金项目,编号:2023AAS02025。
第一作者简介: 兰永军(2001—),男(回族),硕士研究生,研究方向为水泥基材料。E-mail:l18709507036@sina.com。
通信作者简介:李宏波(1977—),男,副教授,博士,硕士生导师,研究方向为土木工程新材料。E-mail:lihongbo@126.com。
摘要:【目的】采用硅锰渣和沙漠砂替代部分水泥实现节能减排、有效利用资源的目的,以硅锰渣、沙漠砂为掺料制备水泥基复合材料,并研究水泥基复合材料的微观结构和力学性能。【方法】以硅酸盐水泥和标准砂水泥作为对照组,制备硅锰渣、 沙漠砂水泥基复合材料试样; 利用扫描电子显微镜和X射线衍射分析仪分析4组水泥基材料的微观结构和水化产物; 分别对4组试样进行抗折和抗压强度试验,研究水泥基复合材料的力学性能。【结果】4组试样的水化产物均为氢氧化钙、钙矾石和水化硅酸钙,但水化产物含量不同。4组试样的抗折、抗压强度均随养护龄期的增大而增大;养护龄期为28 d时,抗折、抗压强度由大到小的4组试样依次为硅酸盐水泥、硅锰渣水泥、标准砂水泥、沙漠砂水泥,试样的抗折强度分别为 2.8、2.6、2.4、1.6 MPa,抗压强度依次为 58.8、57.6、41.7、24.1 MPa,硅酸盐和硅锰渣水泥试样的抗压、抗
折强度较为接近,且均高于标准砂和沙漠砂水泥的。硅锰渣水泥基试样的微观结构致密,标准砂水泥试样的微观结构中含有较多孔隙,沙漠砂水泥试样中因存在明显的结团堆积现象导致结构稳定性降低。【结论】在硅锰渣质量分数为15%、养护龄期为 28 d时,硅锰渣水泥基试样的微观结构致密,与硅酸盐水泥试样的力学性能接近;与沙漠砂相比,硅锰渣更适合替代部分水泥制备水泥基复合材料。
关键词: 硅锰渣;沙漠砂;水泥基复合材料;水化产物;微观结构;力学性能
Abstract
Objective The microstructures and mechanical properties of cement-based composites were studied by using silica manganese
slag and desert sand as admixtures,and the feasibility of preparing cement-based composites instead of cement was analyzed.
Methods Using Portland cement and standard sand cement as control groups, silicon manganese slag and desert sand cementbased
samples were prepared. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were employed to analyze the
microstructure and hydration products of four different groups of cementbased composites. Flexural and compressive strength
tests were conducted to evaluate the mechanical properties of the samples. Microstructural illustrations of the microcementation
surface were drawn to analyze the impact of microstructure on mechanical properties.
Results and Discussion XRD spectra revealed the presence of calcium hydroxide Ca(OH)2 and ettringite (AFt) diffraction
peaks in all four groups. The silicon manganese slag particles in samples S1 exhibited hydration activity,accelerating the hydration reaction of tricalcium silicate C3S in the later curing stages, resulting in the production of a significant amount of AFt,calcium silicate hydrate gel(C-S-H),and Ca(OH)2 crystals. SEM analysis showed that samples S0 and S1 had a higher quantity of
hydration products and a denser,stable structure. Conversely,samples S2 and S3 had fewer hydration products and exhibited
numerous pores and cracks,indicating structural instability. The flexural and compressive strengths of all four groups increased
with the curing period. The order of flexural and compressive strength from highest to lowest was S0,S1,S2,and S3. At 28 days
of curing,the flexural strengths of samples S0,S1,S2,and S3 were 2.8,2.6,2.4,and 1.6 MPa,respectively,while the compressive strengths were 58.8,57.6,41.7,and 24.1 MPa, respectively. Samples S0 and S1 had similar compressive strengths,both higher than those of S2 and S3,indicating that silicon manganese slag was more suitable to substitute cement for cementbased
materials. Illustrations of the microcementation surface for samples S0,S1,and S2 were drawn. In sample S1,the silicon
manganese slag was in close contact with the cement particles,forming a denser microstructure. Sample S2's large standard sand
particles led to more pores in the microstructure. In sample S3,the presence of cluster accumulation in some desert sand
reduced the overall structural stability.
Conclusion When the mass fraction of silicon manganese slag is 15% and the curing period is 28 days,the microstructure of the
silicon manganese slag cement-based sample is dense,with mechanical properties close to those of the Portland cement sample.
Compared to desert sand,silicon manganese slag is more suitable to substitute cement for the preparation of cement-based composite materials.
Keywords: silicon manganese slag;desert sand;cement-based composite material;hydration product;microstructure;mechanical property
[1]沈燕,陈玺,张伟,等.工业废渣在硫铝酸盐水泥生产中的应用现状[J]. 材料导报, 2018,32(增刊2):489-491,497.
SHEN Y,CHEN X, ZHANG W,et al. Current status of industrial waste residue in the production of sulphoaluminate cement[J].
Materials Reports,2018,32(S2):489-491,497.
[2]姬军,刘晓圣,聂京凯,等. 硅锰渣在建筑材料领域的应用现状和发展方向[J]. 中国冶金,2018,28(11): 1-4, 29.
JI J, LIU X S, NIE J K,et al. Application status and development trend of silico-manganese slag in construction materials
field[J]. China Metallurgy,2018,28(11):1-4,29.
[3]YUN C M, BIN BAKRI M K, RAHMAN M R, et al. Effect of chemical treatment on silicon manganese: its morphological,elemental and spectral properties and its usage in concrete[J]. Silicon,2022,14(13):8081-8096.
[4]KUMAR N S,SINGH R N,SANJAY K. A review on characteristics of silico-manganese slag and its utilization intoconstruction
materials[J]. Resources,Conservation and Recycling,2022, 176: 105946.
[5]KUMAR S, GARCÍA-TRIÑANES P, TEIXEIRA-PINTO A, et al. Development of alkali activated cement from mechanically
activated silico-manganese( SiMn) slag[J]. Cement and Concrete Composites, 2013, 40: 7-13.
[6]ALLAHVERDI A, AHMADNEZHAD S. Mechanical activation of silicomanganese slag and its influence on the properties of
Portland slag cement[J]. Powder Technology, 2014, 251: 41-51.
[7]张兰芳, 杨柳, 郝增恒. 锰渣掺合料对水泥砂浆性能的影响研究[J]. 应用化工, 2021, 50(8): 2164-2167, 2171.
ZHANG L F, YANG L, HAO Z H. Study on the effect of manganese slag admixture on the properties of cement mortar[J].
Applied Chemical Industry, 2021, 50(8): 2164-2167, 2171.
[8]NATH S K, KUMAR S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement[J].
Construction and Building Materials, 2016, 125: 127-134.
[9]王丹, 车佳玲, 舒宏博, 等. 沙漠砂-水泥基材的收缩特性[J]. 材料科学与工程学报, 2021, 39(6): 1021-1027.
WANG D, CHE J L, SHU H B, et al. Shrinkage properties of desert sand cementitious materials[J]. Journal of Materials
Science and Engineering, 2021, 39(6): 1021-1027.
[10]LIU M D, LIU E G, HAO J L, et al. Hydration and material properties of blended cement with ground desert sand[J]. Construction and Building Materials, 2023, 389: 131624.
[11]刘海峰, 马映昌, 张润奇, 等 . 冻融环境下沙漠砂对混凝土轴心受压力学性能的影响[J]. 哈尔滨工业大学学报, 2021,53(3): 101-109, 117.
LIU H F, MA Y C, ZHANG R Q, et al. Influence of desert sand on axial compression behavior of concrete under freezing
and thawing environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 101-109, 117.
[12]车佳玲, 王俊, 刘海峰, 等. 沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J]. 吉林大学学报(工
学版), 2023, 53(8): 2277-2286.
CHE J L, WANG J, LIU H F, et al. Self-healing properties with different environments of ECC prepared with desert sand[J].
Journal of Jilin University( Engineering and Technology Edition), 2023, 53(8): 2277-2286.
[13]许建疆, 郭军林, 甘丹, 等 . 粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验[J]. 复合材料学报, 2024, 41(1): 348-360.
XU J J, GUO J L, GAN D, et al. Experimental study on mechanical properties of fly ash cenospheres-desert sand ceramsite
concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 348-360.
[14]李罗胤, 董水博, 刘海峰, 等. 沙漠砂混凝土高温后强度预测及超声检测研究[J]. 硅酸盐通报, 2024, 43(6): 2073-2083.
LI L Y, DONG S B, LIU H F, et al. Strength prediction and ultrasonic testing of desert sand concrete after high temperature[J].
Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2073-2083.
[15]刘强, 刘海峰, 孙帅. 高温后不同沙漠砂替代率砂浆单轴受压力学性能试验研究[J]. 建筑结构, 2021, 51(16):127-134, 75.
LIU Q, LIU H F, SUN S. Study on the uni-axial compression performance of mortar with different desert sand replacement
rates after elevated temperature[J]. Building Structure, 2021, 51(16): 127-134, 75.
[16]张明虎, 刘海峰, 马映昌, 等. 低应变率下沙漠砂混凝土动态力学性能及本构模型[J]. 应用力学学报, 2020, 37(5): 2160-2166, 2331.
ZHANG M H, LIU H F, MA Y C, et al. The dynamic constitutive model and mechanical behaviors of desert sand concrete
at low strain rate[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 2160-2166, 2331.
[17]王雪艳, 刘明辉, 刘萱, 等 . 沙漠砂+机制砂混凝土力学性能及碳排放研究[J]. 土木工程学报, 2022, 55(2): 23-30.
WANG X Y, LIU M H, LIU X, et al. Study on mechanical properties and carbon emissions of desert sand and machinemade
sand concrete[J]. China Civil Engineering Journal, 2022, 55(2): 23-30.
[18]沈鸿海, 刘宇, 郑焱, 等. 水泥制造业绿色低碳技术研究进展[J]. 科技导报, 2024, 42(4): 21-30.
SHEN H H, LIU Y, ZHENG Y, et al. Research progress on low-carbon technologies in cement manufacturing industry[J].
Science and Technology Review, 2024, 42(4): 21-30.
[19]LI H B, KANG X R, LI S, et al. Characterization and mechanism study of sulfate saline soil solidification in seasonal
frozen regions using ternary solid waste-cement synergy[J]. Construction and Building Materials, 2024, 427: 136263.
[20]国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京:
中国标准出版社, 2021.
General administration for national market supervision, National standardization committee. Test method of cement mortar
strength(ISO method):GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021.
[21]邢质冰, 韩凤兰, 李茂辉, 等. 水淬硅锰渣的机械粉磨特性[J]. 矿产综合利用, 2024, 45(1): 174-180.
XING Z B, HAN F L, LI M H, et al. Mechanical grinding characteristics of water quenched Si-manganese slag[J]. Multipurpose
Utilization of Mineral Resources, 2024, 45(1): 174-180.
[22]张宇, 王晅, 张家生, 等. 颗粒形状对砂土力学特性的影响研究[J]. 铁道科学与工程学报, 2022, 19(11): 3256-3265.
ZHANG Y, WANG X, ZHANG J S, et al. Study on the influence of particle shape on the mechanical properties of sand[J].
Journal of Railway Science and Engineering, 2022, 19(11): 3256-3265.
[23]申艳军, 郝建帅, 白志鹏, 等. 沙漠砂制备混凝土研究进展[J]. 硅酸盐通报, 2021, 40(12): 3879-3890.
SHEN Y J, HAO J S, BAI Z P, et al. Research progress of concrete prepared by desert sand[J]. Bulletin of the Chinese
Ceramic Society, 2021, 40(12): 3879-3890.