ISSN 1008-5548

CN 37-1316/TU

2025年31卷  第2期
<返回第2期

华龙一号PCS传热管对安全壳内气溶胶去除影响

Impact of HPR1000 PCS heat transfer tubes on aerosol removal within containment


孙晓晖1,谷海峰2,王辉1

1.中国核电工程有限公司 中核核电安全严重事故研究重点实验室, 北京 100084;2. 哈尔滨工程大学 核安全与仿真技术国防重点学科实验室, 黑龙江 哈尔滨 150001


引用格式:

孙晓晖,谷海峰,王辉.华龙一号PCS传热管对安全壳内气溶胶去除影响[J].中国粉体技术,2025,31(2):1-12.

SUN Xiaohui,GU Haifeng, WANG Hui.Impact of HPR1000 PCS heat transfer tubes on aerosol removal within containment[J].China Powder Sci-ence and Technology, 2025, 31(2): 1−12.

DOI:10.13732/j.issn.1008-5548.2025.02.015

收稿日期:2024-06-25,修回日期: 2024-08-22,上线日期:2024-11-21。

基金项目:国家重点研发计划项目,编号:2020YFB1901400。

第一作者简介:孙晓晖(1989—),男,高级工程师,博士,研究方向为严重事故分析。E-mail:sxhmxh333@sina.com。

通信作者简介:谷海峰(1980—),男,教授,博士生导师,研究方向为核动力装置及反应堆热工水力。E-mail:guhaifeng@hrbeu.edu.cn。


摘要:【目的】研究非能动安全壳冷却系统(passive containment cooling system,PCS)在严重事故过程中强化安全壳内气溶胶的去除过程。【方法】采用离散分区法建立静态封闭系统的气溶胶演化计算模型,研究PCS传热管对安全壳内气溶胶去除的影响,并同步进行对比实验。【结果】理论计算模型的计算结果与实验结果吻合较好; 随着PCS传热管表面积的增加和传热管附近温度梯度的增加,气空间气溶胶悬浮比例降低;双隔间模型计算得到的气溶胶悬浮比例比单隔间模型结果更高; 在文中华龙一号安全壳缩比参数的容器内,PCS传热管可提升气溶胶沉积效率约为12%。【结论】建立的理论模型可用于气溶胶沉积过程的分析研究; PCS传热管表面积的增加和传热管附近温度梯度的增加对气溶胶的去除具有强化作用; 评估安全壳内PCS传热管对气溶胶强化作用,须考虑安全壳内气溶胶分布的不均匀性,基于均匀性假设评估的结果并不保守; PCS传热管可显著增强安全壳内气溶胶的去除效果。

关键词:气溶胶; 华龙一号; 非能动安全壳冷却系统;扩散泳

Abstract

Objective During a severe accident at a nuclear power plant,the containment,serving as the final barrier to confine radioactive

fission products,plays a crucial role in preventing the spread of radiation.Passive containment cooling systems(PCS)are incorporated  into third-generation reactors,such as AP1000 and Hualong series,to cool and depressurize the containment vessel following a severe 

accident,thereby preventing containment failure.During the cooling process in Hualongreactors,temperatureand gas concentration gradien-tsform near the PCS heat transfer tubes.These gradients drive aerosol dynamic phenomena such as diffusiophoresis and thermophoresis in 

the PCS,which enhance the removal of aerosols from the containment vessel during severe accidents.However,due to our insufficient unde-rstanding of PCS’s enhanced aerosol removal effect,the effect has not been considered in traditional source term assessments.Therefor-e,research on the enhanced aerosol removal effect of PCS is beneficial for optimizing source term assessments and improving economic 

efficiency.

Methods In this study,the discrete zone method was employed to solve the aerosol transport equation,focusing on the impact of PCS heat transfer tubes on aerosol removal within the containment.The theoretical calculation model was compared and verified through experiments. The calculations considered various processes affecting aerosol particles,including convection,diffusion,coagulation,condensation,

nucleation,and deposition.The deposition process includes four mechanisms: gravitational settling,Brownian diffusion,thermophoresis, and diffusiophoresis.Experiments were conducted in a simulation chamber with a volume of approximately 12 m³,where the parameters of the heat transfer tubes were consistent with those of the prototype PCS in the Hualong pressurized reactor 1000(HPR1000).Titanium dioxide aerosols were generated using a Palas RBG2000 aerosol generator,and their particle size distribution was measured using a Palas Promo3000HP aerosol spectrometer.To investigate the impact of PCS on aerosol size evolution,experiments were conducted under two conditions:with and without heat transfer tubes.During the experiments,after introducing aerosols into the chamber,they were allowed to mix thoroughly before initiating measurements of their size distribution to establish a baseline.The evolution of aerosol particle sizes within the cha-mber was subsequently tracked over time.

Results and discussion The process of solving the aerosol transport equation using the discrete zone method is described in the pape-r.The effects of various factors,including heat transfer tube surface area,temperature gradient between the heat transfer tube wall and surrounding atmosphere,and non-uniform aerosoldistribution within the containment,on aerosol removal were studied.The results showed 

that:1)the calculated results of the theoretical calculation model in the paper matched well with experimental results,indicating its applicability for analyzing aerosol deposition processes.2)Increasing PCS heat transfer tube surface area and the temperature gradient 

near the tube wall could both enhance aerosol removal.Therefore,increasing the surace area of heat transfer tubes can be consideredin 

PCS design to optimize the source term.3)When evaluating the enhanced effect of PCS on aerosol removal,non-uniform aerosoldistribution within the containment should be considered,as results based on uniformity assumptions are not conservative.4)In the scaled-down conta-inment model of the HPR1000 studied in the paper,PCS heat transfer tubes increased aerosol deposition efficiency by approximately 12%.

Conclusion The following conclusions are drawn from the analysis:1)The developed theoretical model can be used for studying aerosol  deposition processes.2)Increasing the surface area of the PCS heat transfer tubes and the temperature gradient near these tubes greatly enhance aerosol removal.3)When evaluating the enhanced effects of PCS heat transfer tubes on aerosol removal within the containment,the non-uniformity of aerosol distribution within the containment must be considered,as evaluations based on uniformity assumptions are not conservative.4)PCS heat transfer tubes can significantly enhance aerosol removal within the containment.

Keywords:aerosol;HPR1000;passive containment cooling system;diffusiophoresis


参考文献(References)

[1]BOWSHER B R.Fission-product chemistry and aerosol behaviour in the primary circuit of a pressurized water reactor under severe acci-dent conditions[J].Progress in Nuclear Energy,1987,20(3):199-233.

[2]FUCHS N A.The mechanics of aerosols[R].Moscow:Moscow Kaprov Ins-titute of physical Chemistry,1964.

[3]魏严淞,田林涛,谷海峰,等.气溶胶的喷淋去除特性实验研究[J].节能技术,2020,38(3):217-234.

WEI Y S,TIAN L T,GU H F,et al.Experimental study on the removal characteristics of aerosol by spray system[J].Energy Conservation 

Technology,2020,38(3):217-234.

[4]于汇宇,谷海峰,孙中宁,等 .喷淋去除气溶胶的模型及实验研究[J].哈尔滨工程大学学报,2023,44(5):815-822.

YU H Y,GU H F,SUN Z N,et al.Medel and experimental study of aerosol removal by spray[J].Journal of Harbin Engineering University,

2023,44(5):815-822.

[5]李亚冰,佟立丽,曹学武.先进非能动压水堆防火喷淋对严重事故的缓解作用研究[J].核科学与工程,2016,36(6):836-842.

LI Y B,TONG L L,CAO X W.Mitigation on severe accidents with fire spray system in advanced passive PWR[J].Nuclear Science and Enginee-ring,2016,36(6):836-842.

[6]邢继.华龙一号能动和非能动相结合的先进压水堆核电厂[M].北京:中国原子能出版社,2016.

XING J.Advanced pressurized water reactor nuclear power plant combining active and passive safety systems of the Hualon-gone[M].Beiji- ng:China Nuclear Power Press,2016.

[7]CHEN W,HUI K,WANG B,et al.Review of the tube external condensation heat transfer characteristic of the passive containment cooli-ng system in nuclear power plant[J].Annals of Nuclear Energy,2021,157:108226.

[8]佟立丽,曹学武.非能动安全壳冷却机制安全壳大气净化分析[J].科技导报,2012,30(20):29-32.

TONG L L,CAO X W.Analysis of containment aerosol removal induced by passive containment cooling mechanism[J].Science Technology Revi- ew,2012,30(20):29-32.

[9]陈林林,孙雪霆,魏严淞,等.安全壳内气溶胶扩散行为的试验方案研究[J].辐射防护,2017,37(1):45-49.

CHEN L L,SUN X T,WEI Y S,et al.The method study on aerosol diffusiophoresis in the containment[J].Radiation Protection,2017,37(1):45-49.

[10]孙雪霆,陈林林,魏严淞,等.非能动安全壳冷却对严重事故下气溶胶沉积影响分析[J].原子能科学技术,2016,50(12):2219-2223.

SUN X T,CHEN L L,WEI Y S,et al.Analysis of aerosol deposition affected by passive containment cooling in severe accident condition[J].Atomic Energy Science and Technology,2016,50(12):2219-2223 .

[11]孙雪霆,陈林林,史晓磊,等.严重事故下水蒸气凝结对气溶胶扩散泳影响研究[J].原子能科学技术,2017,51(1):73-78.

SUN X T,CHEN L L,SHI X L,et al.Study on effect of steam condensation on aerosol diffusiophoresis in severe accident condition[J].At-omic Energy Science and Technology,2017,51(1):73-78.

[12]付亚茹,耿珺,孙大威,等.AP1000核电厂安全壳内气溶胶自然去除分析[J].原子能科学技术,2017,51(4):700-705.

FU Y R,GENG J,SUN D W,et al.Aerosol natural removal analysis in containment for AP1000 nuclear power plant[J].Atomic Energy Science and Technology,2017,51(4):700-705 .

[13]黄高峰,曹学武,佟立丽.严重事故下裂变产物气溶胶自然沉积现象研究[J].核动力工程,2012,33(4):135-138.

HUANG G F,CAO X W,TONG L L.Study on natural deposition of fission product aerosol in severe accidents[J].Nuclear Power Engineering, 2012,33(4):135-138.

[14]梁洋洋,王晨,张天琦,等.安全壳内PCS换热器气溶胶自然沉积特性研究[J].工业技术,2021,4:68-71.

LIANG Y Y,WANG C,ZHANG T Q,et al.Study on natural deposition characteristics of aerosols in PCS heat exchanger within containment[J].Industrial Technology,2021,4:68-71.

[15]张天琦,于明锐,宋明强,等.核电厂安全壳内气溶胶热泳沉积特性研究[J].核安全,2018,17(3):36-39.

ZHANG T Q,YU M R,SONG M Q,et al.Characteristics of thermophoresis deposition of aerosols in the containment[J].Nuclear Safety,

2018,17(3):36-39.

[16]刘建昌,陈忆晨,余剑,等.华龙一号失水事故后安全壳内气溶胶自然沉降现象研究[J].核安全,2022,21(1):75-81.

LIU J C,CHEN Y C,YU J,et al.Research on aerosol natural deposition phenomenon of HPR1000 loss of coolant accident[J].Nuclear Safe-  ty,2022,21(1):75-81.

[17]王辉,陈巧艳.PCS系统作用下的安全壳内部大气流动与传热行为研究[J].南方能源建设,2015,2(4):66-69,87.

WANG H,CHEN Q Y.Research on gas behavior of flow and heat transfer in containment with the effect of PCS[J].Southern Energy Construct-ion,2015,2(4):66-69, 87.

[18]《南方能源建设》编辑部.第十一届中国核电技术发展高峰论坛会议综述[J].南方能源建设,2016,3(3):131-137.

Editorial Board of Southern Energy Construction.An overview of 11th Annual China Nuclear Power Congress[J].Southern

Energy Construction,2016,3(3):131-137.

[19]姜舒婷,邹文重.华龙一号非能动安全壳冷却系统对严重事故后果影响研究[J].原子能科学技术,2022,56(2):374-378.

JIANG S T,ZOU W Z.Study on effect of passive containment cooling system for HPR1000 on severe accident consequence[J].Atomic Energy

 Science and Technology,2022,56(2):374-378.

[20]FRED G.Simulation of multicomponent aerosol dynamics[J].Journal of Colloid and Interface Science,1980,78(2):485-501.