1. 济南大学 a. 山东省建筑材料制备与测试技术重点实验室, b. 材料科学与工程学院,山东 济南 250022;2. 内蒙古科技大学 土木工程学院,内蒙古 包头 014010
Abstract
Objective To reduce energy consumption in the cement industry, this paper reviews and analyzes research findings on supersulfated cement (SSC), which could contribute to the green and low-carbon development of the cement industry.
Progress The primary research focus on SSC includes its hydration, performance, and durability. SSC is a new type of low-carbon cement composed of granulated blast furnace slag (GBFS), gypsum, and an alkaline activator. The use of highly reactive GBFS in SSC effectively promotes hydration, while waste gypsum supports later-stage hydration and strength development. Different types of activators have varying effects on hydration promotion, and high-belite sulfoaluminate cement clinker has shown excellent performance in enhancing early strength development. Adding appropriate amounts of calcium formate and nano-SiO2 to SSC can further accelerate hydration reactions and improve early strength. SSC generally has a long setting time, good volume stability, and strong resistance to sulfate and acid attack. However, its poor carbonation resistance and freeze-thaw performance are significant obstacles to wider application.
Conclusions and Prospects Addressing the issues of low early mechanical strength, poor carbonation resistance, and inadequate freeze-thaw performance is crucial for the broader application of SSC. Overcoming these challenges has strong practical implications for the promotion and use of SSC.
Keywords: supersulfated cement; hydration mechanism; mechanical properties; durability
参考文献(References)
[1] 贺晋瑜, 何捷, 王郁涛, 等. 中国水泥行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 347-355.
HE J Y, HE J, WANG Y T, et al. Pathway of carbon emissions peak for cement industry in China[J]. Research of Environmental Sciences, 2022, 35(2): 347-355.
[2] KAMECHE Z E A, DJELIL M, DAHMANI B. Effects of incorporating silica glass powder as a supplementary cementitious material on selected properties of Portland cement mortar[J]. Journal of Building Engineering, 2023, 78: 107550.
[3] MOHANRAJ D E K, VASANTH R. A review: the effect and behaviour of concrete using lime stone powder[J]. International Journal for Research in Applied Science and Engineering Technology, 2022, 10(12): 2400-2403.
[4] ASTUDILLO B, MARTÍN D A, COSTAFREDA J L, et al. Improvement of the mechanical properties of mortars manufactured with partial substitution of Portland cement by kaolinitic clays[J]. Buildings, 2023, 13(7): 1647.
[5] ZOU Z M, PROVOOST S, GRUYAERT E. Utilization of waste brick powder as a partial replacement of Portland cement in mortars[J]. Sustainability, 2024, 16(2): 624.
[6] DOUSSANG L, SAMSON G, DEBY F, et al. Durability parameters of three low-carbon concretes (low clinker, alkali-activated slag and supersulfated cement)[J]. Construction and Building Materials, 2023, 407: 133511.
[7] WANG L, GAO Z Y, GAO F H, et al. Comparing study on the evolution characteristics of performance and microstructure between Portland slag cement and supersulfated cement under chemical attacks[J]. Construction and Building Materials, 2024, 425: 135969.
[8] 李成业. 改性超硫酸盐水泥反应机理及早期收缩研究[D]. 广州: 广州大学, 2022.
LI C Y. Study on reaction mechanism and early shrinkage of modified supersulfate cement[D]. Guangzhou: Guangzhou University, 2022.
[9] WU Q Y, XUE Q Z, YU Z Q. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021, 294: 126228.
[10] 唐明, 王涛, 戚无恙. 激光仪下矿渣粉颗粒群分形特征的快速评价[J]. 沈阳建筑工程学院学报(自然科学版), 2003, 19(3): 200-202.
TANG M, WANG T, QI W Y. Fast evaluating of fractal characteristics of superfine slag powder by laser fineness gage[J]. Journal of Shenyang Architectural and Civil Engineering Institute, 2003, 19(3): 200-202.
[11] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178.
[12] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243.
[13] PIMENTA S, ANGULSKI DA LUZ C, PELISSER F. The use of metakaolin as a source of alumina in supersulfated in cements order to increase the formation of ettringite[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(9): 3301-3309.
[14] 吴亚男, 王璜琪, 王栋民, 等. 矿渣种类对新型石膏矿渣硫铝酸盐水泥水化硬化的影响[J]. 硅酸盐通报, 2022, 41(4): 1352-1361.
WU Y N, WANG H Q, WANG D M, et al. Effects of slag types on hydration and hardening of new gypsum slag sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1352-1361.
[15] 郭玉萍, 王海波, 牛全林. 超硫酸盐水泥的组成、制备及性能[J]. 工程质量, 2016, 34(11): 66-68.
GUO Y P, WANG H B, NIU Q L. Composition, preparation and properties of supersulfated cement[J]. Construction Quality, 2016, 34(11): 66-68.
[16] CABRERA-LUNA K, MALDONADO-BANDALA E E, NIEVES-MENDOZA D, et al. Supersulfated cements based on pumice with quicklime, anhydrite and hemihydrate: characterization and environmental impact[J]. Cement and Concrete Composites, 2021, 124: 104236.
[17] SINGH M, GARG M. Calcium sulfate hemihydrate activated low heat sulfate resistant cement[J]. Construction and Building Materials, 2002, 16(3): 181-186.
[18] GRACIOLI B, ANGULSKI DA LUZ C, BEUTLER C S, et al. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements[J]. Construction and Building Materials, 2020, 262: 119961.
[19] LIU S H, OUYANG J Y, REN J. Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement[J]. Construction and Building Materials, 2020, 243: 118226.
[20] 余保英, 高育欣, 王军. 含不同石膏种类的超硫酸盐水泥的水化行为[J]. 建筑材料学报, 2014, 17(6): 965-971.
YU B Y, GAO Y X, WANG J. Hydration behavior of super sulphated cement with different types of gypsum[J]. Journal of Building Materials, 2014, 17(6): 965-971.
[21] DE WEERDT K, BEN HAHA M, LE SAOUT G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement and Concrete Research, 2011, 41(3): 279-291.
[22] SCHÖLER A, LOTHENBACH B, WINNEFELD F, et al. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder[J]. Cement and Concrete Composites, 2015, 55: 374-382.
[23] 孙鹏金. 石膏与矿渣配比及减水剂掺量对超硫酸盐水泥的影响[J]. 黑龙江工业学院学报(综合版), 2023, 23(3): 82-86.
SUN P J. Effect of the ratio of gypsum and slag and water-reducing agent admixture on super-sulfate cement[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 2023, 23(3): 82-86.
[24] MASOUDI R, HOOTON R D. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags[J]. Cement and Concrete Composites, 2019, 103: 193-203.
[25] PARK H, JEONG Y, JUN Y B, et al. Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum[J]. Cement and Concrete Composites, 2016, 68: 57-65.
[26] CABRERA-LUNA K, MALDONADO-BANDALA E E, NIEVES-MENDOZA D, et al. Novel low emissions supersulfated cements of pumice in concrete: mechanical and electrochemical characterization[J]. Journal of Cleaner Production, 2020, 272: 122520.
[27] 陆瑶, 李双喜, 田亚超, 等. 碱激发剂对超硫酸盐水泥及其混凝土性能的影响[J]. 粉煤灰综合利用, 2020, 34(6): 59-63.
LU Y, LI S X, TIAN Y C, et al. The effect of alkali activator on the properties of super sulfate cement and concrete[J]. Fly Ash Comprehensive Utilization, 2020, 34(6): 59-63.
[28] 孙正宁, 周健, 慕儒, 等. 新型超硫酸盐水泥水化硬化机理[J]. 硅酸盐通报, 2019, 38(8): 2362-2368.
SUN Z N, ZHOU J, MU R, et al. Hydration and hardening mechanisms of newly developed supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2362-2368.
[29] 朱林. 超硫酸盐水泥及其稳定碎石若干性能研究[D]. 淄博: 山东理工大学, 2014.
ZHU L. Study on some properties of super sulfate cement and its stabilized macadam[D]. Zibo: Shandong University of Technology, 2014.
[30] 高育欣, 王军, 向佳瑜, 等. 基于粉料粒径变化的超硫酸盐水泥力学性能研究[J]. 混凝土与水泥制品, 2014(3): 14-18.
GAO Y X, WANG J, XIANG J Y, et al. Mechanical properties study on super sulphate cement(SSC) based on powder particle diameter change[J]. China Concrete and Cement Products, 2014(3): 14-18.
[31] SUN Z N, NIE S, ZHOU J, et al. Hydration mechanism of calcium sulfoaluminate-activated supersulfated cement[J]. Journal of Cleaner Production, 2022, 333: 130094.
[32] RUBERT S, ANGULSKI DA LUZ C, FVARELA M V, et al. Hydration mechanisms of supersulfated cement[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(2): 971-980.
[33] 武双磊, 季军荣, 周威杰, 等. 乳酸钠对超硫酸盐水泥强度的影响及作用机理[J]. 硅酸盐通报, 2022, 41(9): 3008-3015.
WU S L, JI J R, ZHOU W J, et al. Effect and mechanism of sodium lactate on strength of supersulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3008-3015.
[34] 陈宇, 严金生, 章迪, 等. 硝酸钙对超硫酸盐水泥强度的影响[J]. 材料科学与工程学报, 2023, 41(4): 576-582.
CHEN Y, YAN J S, ZHANG D, et al. Effects of calcium nitrate on strength of supersulfate cement[J]. Journal of Materials Science and Engineering, 2023, 41(4): 576-582.
[35] 曲宇鹏. 甲酸钙对超硫酸盐水泥性能影响研究[D]. 济南: 济南大学, 2022.
QU Y P. Study on the influence of calcium formate on the properties of ultra-sulfate cement[D]. Jinan: University of Jinan, 2022.
[36] NGUYEN H A, CHANG T P, SHIH J Y, et al. Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste[J]. Cement and Concrete Composites, 2019, 99: 40-48.
[37] 李贝贝, 陈衡, 侯鹏坤, 等. 纳米SiO2对超硫酸盐水泥性能影响研究[J]. 硅酸盐通报, 2022, 41(5): 1494-1501.
LI B B, CHEN H, HOU P K, et al. Effect of nano-SiO2 on properties of supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1494-1501.
[38] SAHA A, TONMOY T M, SOBUZ M H R, et al. Assessment of mechanical, durability and microstructural performance of sulphate-resisting cement concrete over Portland cement in the presence of salinity[J]. Construction and Building Materials, 2024, 420: 135527.
[39] 金英. 超硫酸盐水泥制备高性能混凝土的研究与应用[D]. 武汉: 武汉工程大学, 2017.
JIN Y. Research and application of preparing high performance concrete with super sulfate cement[D]. Wuhan: Wuhan Institute of Technology, 2017.
[40] 刘浩然. 高抗折低热矿渣硫铝酸盐水泥抗化学侵蚀性能及机理[D]. 天津: 河北工业大学, 2019.
LIU H R. Chemical corrosion resistance and mechanism of slag sulphoaluminate cement with high flexural strength and low heat[D]. Tianjin: Hebei University of Technology, 2019.
[41] CAO R Z, YANG J F, LI G X, et al. Resistance of the composite cementitious system of ordinary Portland/calcium sulfoaluminate cement to sulfuric acid attack[J]. Construction and Building Materials, 2022, 329: 127171.
[42] DAMION T, CHAUNSALI P. Evaluating acid resistance of Portland cement, calcium aluminate cement, and calcium sulfoaluminate based cement using acid neutralisation[J]. Cement and Concrete Research, 2022, 162: 107000.
[43] MADRASZEWSKI S, SIELAFF A M, STEPHAN D. Acid attack on concrete⁃damage zones of concrete and kinetics of damage in a simulating laboratory test method for wastewater systems[J]. Construction and Building Materials, 2023, 366: 130121.
[44] CHANG S, GAO F H, WANG L, et al. Deterioration mechanism of supersulfated cement paste exposed to sulfate attack and combined acid-sulfate attack[J]. Construction and Building Materials, 2024, 414: 134978.
[45] 高富豪, 王露, 刘数华. 超硫酸盐水泥净浆的酸性侵蚀劣化机制[J]. 硅酸盐通报, 2022, 41(8): 2618-2627.
GAO F H, WANG L, LIU S H. Deterioration mechanism of supersulfated cement paste by acid erosion[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2618-2627.
[46] YU B Y, FANG Z, GAO Y X, et al. Carbonation of supersulfated cement concrete after 8 years of natural exposure[J]. Cement and Concrete Composites, 2023, 142: 105165.
[47] LOANNOU S, BADR A, KOSTOVA K, et al. Utilization of fabric formwork for improving the durability of concrete from supersulfated cement[J]. Key Engineering Materials, 2016, 711:615-621.
[48] PINTO S R, ANGULSKI DA LUZ C, MUNHOZ G S, et al. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress[J]. Construction and Building Materials, 2020, 263: 120640.
[49] ZHOU Y, PENG Z C, CHEN L C, et al. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: mitigating the strength and carbonation resistance[J]. Cement and Concrete Composites, 2021, 118: 103947.
[50] 王亮, 周扬, 彭泽川, 等. 脱硫石膏基超硫酸盐水泥混凝土强度和抗碳化性能研究[J]. 混凝土与水泥制品, 2022(3): 85-90.
WANG L, ZHOU Y, PENG Z C, et al. Study on the strength and carbonation resistance of desulfurized gypsum-based supersulfate cement concrete[J]. China Concrete and Cement Products, 2022(3): 85-90.
[51] 高育欣, 余保英, 徐芬莲, 等. 超硫酸盐水泥在国内外的研究与应用现状[C]//2011年混凝土与水泥制品学术讨论会论文集, 无锡, 2011: 235-241.
GAO Y X, YU B Y, XU F L, et al. Research and application status of supersulfate cement at home and abroad [C]// Proceedings of the 2011 Concrete and Cement Products Symposium, Wuxi, 2011: 235-241.
[52] 彭泽川. 强/弱碱激发剂对超硫酸盐水泥混凝土微结构与性能的影响机制[D]. 南京: 东南大学, 2022.
PENG Z C. Influence mechanism of strong/weak alkali activator on microstructure and properties of supersulfate cement concrete[D]. Nanjing: Southeast University, 2022.
[53] XING J R, ZHOU Y, PENG Z C, et al. The influence of different kinds of weak acid salts on the macro-performance, micro-structure, and hydration mechanism of the supersulfated cement[J]. Journal of Building Engineering, 2023, 66: 105937.