王 伟,孙浩东,孙 蕊
东北大学 材料各向异性与织构教育部重点实验室, 材料科学与工程学院, 辽宁 沈阳 110819
引用格式:
王伟,孙浩东,孙蕊.大孔径介孔二氧化硅纳米粒子研究进展[J].中国粉体技术,2025,31(2):32-50.
WANG Wei,SUN Haodong,SUN Rui.Research progress on large‐pore mesoporous silica nanoparticles[J].China Powder Science and Technolo-
gy,2025,31(2):32−50.
DOI:10.13732/j.issn.1008-5548.2025.02.003
收稿日期:2024-08-29,修回日期:2024-11-03,上线日期:2025-01-21。
基金项目:国家重点研发计划项目,编号:2017YFB0310300;辽宁省“兴辽英才”计划项目,编号:XLYC1807015。
第一作者简介:王伟(1979—),男,教授,博士,博士生导师,入选辽宁省“兴辽英才”计划,研究方向为多孔材料的设计、制备与应用。E-mail:wangw@atm. neu. edu. cn。
摘要:【目的】系统性总结大孔径介孔二氧化硅纳米粒子(large‐pore mesoporous silica nanoparticles,LPMSNs)的研究进展,以期为其在吸附、催化和负载等领域的应用相关研究和发展提供支持。【研究现状】目前,研究人员已开发出多种合成LPMSNs的方法,包括直接法(复合模板法、 高分子量有机模板剂法、有机膨胀剂法)和后处理法。这些方法在制备LPMSNs中各具优势,然而缺陷也很突出。比如,利用复合模板法在得到不同有序结构和控制孔径方面优势明显,但在制备体系上却受限于特殊和昂贵模板剂的使用; 另外,虽然采用有机膨胀剂法可以得到LPMSNs,但膨胀剂的消耗量大,毒性强,不利于LPMSNs的绿色和规模化制备。在应用研究上,目前方法所能得到的具有不同介孔结构(有序、无序、树枝状等)、不同大孔径(5~50 nm)的LPMSNs已然展现出诸如高吸附量、高催化效率以及大负载量等应用优势。【结论与展望】LPMSNs的相关研究在提高其合成效率和实现绿色制备方面还须加大投入,对不同介孔结构的开发、应用的拓展和性能的提升仍然是未来的研究重点,LPMSNs有望在生物大分子和药物的高量负载、生物酶和异相催化等应用领域充当重要角色。
关键词:大孔径;介孔二氧化硅;纳米粒子;后处理法;直接法
Abstract
Significance Since the pioneering work in 2001 on the synthesis of mesoporous silica nanoparticles(MSNs) by employing a modified ca-tionic surfactant templating route under suitable conditions,such as dilute solution and high temperatures,MSNs have attracted signifi-cant attention due to their tunable particle sizes,morphologies,misstructures,high surface areas,hydro‐philic and easily functiona- lized surfaces,and biocompatibility.These structural or morphological properties have made MSNs appealing for diverse application-s,including drug delivery,imaging,catalysis,and sensing.In biomedical areas,monodisperse MSNs in the 50 ~ 200 nm size range with large me-sopores are especially desirable,as these facilitate cell uptake and biomolecule encapsulation. In addition,the accessible internal su-rface area and pore volume resulting from interconnected pores would be especially advantageous for these applications. Large-pore MSNs (LPMSNs),characterized by nano-scale particle sizes,large mesopores,and high surface areas,have attracted tremendous scientific and technological interest due to their high potential in adsorption,catalysis,and support systems.The review focuses on the resea-rch progress of LPMSNs,especially on synthesis techniques and mechanisms for achieving large mesopores,with the aim of supporting futu-re LPMSN research and development.
Progress LPMSNs with tunable structures(e.g.,ordered,disordered,dendritic)and mesopore sizes(5 ~ 50 nm)exhibit properties
suitable for various applications,such as high adsorption capacity,high catalytic efficiency,and enhanced mass transfer.So far,sever-al methods have been developed to prepare LPMSNs,using composite templates,high molecular weight organic templates,or organic pore-
swelling agents,through direct or post-synthetic approaches.Although these methods produce desirable structures,they also have drawbacks.For example,multiple templates can produce ordered mesostructures with tunable large mesopores,but they often rely on specialized or expensive templates,which might impede large-scale production.Organic swelling agents(OSAs)are effective for enlarging mesopores,but their high consumption and potential toxicity might pose great challenges on green and low-cost production of LPMSNs.Additionally,certain organic molecules or aggregates can guide LPMSN synthesis,though their availability and cost may limit their practical application.
Recently,post-treatment methods using inorganic acids(e.g.,sulfuric or boric acid)or salts(e.g.,ammonium chloride,sodium tetrahy- droborate)have been demonstrated to be able to effectively enlarge mesopores up to tens of nanometers in conventional small-mesopore MS-Ns,while maintaining surface areas of up to 300 m 2/g. These methods,based on the Ostwald ripening process,are simpler and more cost- effective than OSA-based methods.However,It is worth noting that conducting Ostwald ripening process under harsh conditions(e.g.,high temperatures over 140 o C for extended periods)can significantly deteriorate mesostructures,leading to a substantial drop in surface area.Therefore,a balance must be struck between achieving ultra-large mesopores(e.g.,over 20 nm)and maintaining sufficient surface area.
Conclusions and Perspective Future research should focus on the green synthesis of LPMSNs with tunable structures to enhance performance.For LPMSN synthesis,it is suggested that future research should prioritize the following topics:1)developing LPMSNs with novel structures for current and emerging applications, including hollow or hierarchically porous LPMSNs;2)exploring low-cost and eco-friendly templates to reduce production costs and pollution;and 3)improving synthesis efficiency by increasing SiO 2 solid content in the mixtu-re,aiming for high-solid content synthesis approaches that maintain both the structure and dispersibility of LPMSNs. Reducing production costs necessitates the use of affordable silica sources. Low-cost LPMSNs with high surface area and good dispersibility could greatly ex-tend their applications to replace fumed silica or xerogels in fields like food,composite additives and paints. Overall,LPMSNs hold si-gnificant potential in applications demanding high loading capacities for biomolecules,drugs,and enzymes.They can be used as supports for catalysis with enhanced mass transfer,and as efficient adsorbents and useful additives.
Keywords: large pores;mesoporous silica nanoparticles;post-treatment method;direct method
参考文献(References)
[1]VU X H,NGUYEN S,DANG T T,et al.Improved biofuel quality in catalytic cracking of triglyceride-rich biomass over nanocrystalline and hierarchical ZSM-5 catalysts[J].Biomass Conversion and Biorefinery,2021,11(3):755-766.
[2]YANG Y,HAO J,CUI J.Engineering of hierarchical mesoporous silica nanoparticles via control over surfactant nanoarchitectonics for biological applications[J].Current Opinion in Colloid & Interface Science 2024,72:101819.
[3]WANG Y,HUANG L,LI S,et al.The capture and catalytic conversion of CO 2 by dendritic mesoporous silica-based nanoparticles[J]. Energy & Environmental Materials,2023,7(2):e12593.
[4]WANG Y,ZHAO Q,HAN N,et al.Mesoporous silica nanoparticles in drug delivery and biomedical applications[J].Nanomedicine-Nanotec-hnology Biology and Medicine,2015,11(2):313-327.
[5]XU C,LEI C,WANG Y,et al.Dendritic mesoporous nanoparticles:structure,synthesis and properties[J].Angewandte Chemie-Internati-onal Edition,2022,61(12):e202112752.
[6]CAI Q,LUO Z S,PANG W Q,et al.Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium[J].Chemistry of Materials,2001,13(2):258-263.
[7]NOONEY R I,THIRUNAVUKKARASU D,CHEN Y M,et al. Synthesis of nanoscale mesoporous silica spheres with controlled particle size[J].Chemistry of Materials,2002,14(11):4721-4728.
[8]FOWLER C E,KHUSHALANI D,LEBEAU B,et al. Nanoscale materials with mesostructured interiors[J].Advanced Materials,2001,13(9):649-652.
[9]ZHANG K,XU L L,JIANG J G,et al.Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore stru-cture[J].Journal of the American Chemical Society,2013,135(7):2427-2430.
[10]LIU P C,YU Y J,PENG B,et al. A dual-templating strategy for the scale-up synthesis of dendritic mesoporous silica nanospheres[J].Green Chemistry,2017,19(23):5575-5581.
[11]WU S H,MOU C Y,LIN H P.Synthesis of mesoporous silica nanoparticles[J].Chemical Society Reviews,2013,42(9):3862-3875.
[12]DENG Y,WEI J,SUN Z,et al. Large-pore ordered mesoporous materials templated from non-pluronic amphiphilic block copolymers [J].Chemical Society Reviews,2013,42(9):4054-4070.
[13]KNEZEVIC N Z,DURAND J O.Large pore mesoporous silica nanomaterials for application in delivery of biomolecules[J].Nanoscale,
2015,7(6):2199-2209.
[14]WEI J,SUN Z,LUO W,et al.New insight into the synthesis of large-pore ordered mesoporous materials[J].Journal of the American Chemical Society,2017,139(5):1706-1713.
[15]NARAYAN R,NAYAK U Y,RAICHUR A M,et al.Mesoporous silica nanoparticles:a comprehensive review on synthesis and recent advances [J].Pharmaceutics,2018,10(3):118.
[16]JEELANI P G,MULAY P,VENKAT R,et al.Multifaceted application of silicananoparticles:a review[J].Silicon,2020,12(6):1337-1354.
[17]AHMED H,GOMTE S S,PRATHYUSHA E,et al.Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier[J].Journal of Drug Delivery Science and Technology,2022,76:103729.
[18]SUN R,QIAO P,WANG Z,et al.Monodispersed large-mesopore mesoporous silica nanoparticles enabled by sulfuric acid assisted hydro- thermal process[J].Microporous and Mesoporous Materials,2021,317:111023.
[19]GAO F,BOTELLA P,CORMA A,et al.Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA[J].The Journal of Physical Chemistry B,2009,113(6):1796-1804.
[20]HAN Y,YING J Y.Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures[J].Angewandte Chemie-International Edition,2005,44(2):288-292.
[21]GU J,HUANG K,ZHU X,et al.Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation[J].Journal of Colloid and Interface Science,2013,407(1):236-242.
[22]WANG X,ZHOU L,LIU Y,et al.Transformation from single-mesoporous to dual-mesoporous organosilica nanoparticles[J].Nanoscale,2017,9(19):6362-6369.
[23]GAO Z,ZHAROV I.Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule,tannic acid[J].Chemistry of Materials,2014,26(6):2030-2037.
[24]SHI X,ZHANG P,WU L,et al.Trypsin templated biomimetic large mesoporous silica performs favorable advantages in delivering poorly water-soluble drug[J].Materials Science and Engineering:B,2021,271:115252.
[25]ZHANG J,LI X,ROSENHOLM J M,et al.Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles[J]. Journal of Colloid and Interface Science,2011,361(1):16-24.
[26]MÖELLER K,BEIN T.Talented mesoporous silica nanoparticles[J].Chemistry of Materials,2017,29(1):371-388.
[27]KAO K C,MOU C Y.Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent[J].Microporous and Mesoporous Materials,2013,169(15):7-15.
[28]SHEN D,YANG J,LI X,et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanosp-heres [J].Nano Letters,2014,14(2):923-932.
[29]GU J L,DONG X,ELANGOVAN S P,et al.Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity[J].Journal of Solid State Chemistry,2012,186:208-216.
[30]KIM M H,NA H K,KIM Y K,et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery[J].ACS Nano,2011,5(5):3568-3576.
[31]SAYARI A,KRUK M,JARONIEC M,et al.New approaches to pore size engineering of mesoporous silicates[J].Advanced Materials,1998,10(16):1376-1379.
[32]SAYARI A,SHEE D,ALYASSIR N,et al.Catalysis over pore-expanded MCM−41 mesoporous materials[J].Topics in Catalysis,2010,53(3):154-167.
[33]SUN R,ZHOU J G,WANG W.A boric acid-assisted hydrothermal process for preparation of mesoporous silica nanoparticles with ultra-
large mesopores and tunable particle sizes[J].Ceramics International,2023,49(12):20518-20527.
[34]SUN R,SUN Y,WANG W.Facile and controllable preparation of mesoporous silica nanoparticles with ultra-large mesopores enabled by an ammonium chloride-assisted hydrothermal process[J].Microporous and Mesoporous Materials,2023,360:112730.
[35]SUN R,ZHANG A,SUN H D,et al.Facile synthesis of monodispersed mesoporous silica nanoparticles with ultra-large mesopores through a NaBH 4 -assisted hydrothermal process[J].Journal of Non-crystalline Solids,2024,627(1):112820.
[36]WANG Z,SUN R,WANG P,et al.Unit-cell wide SBA-15 type mesoporous silica nanoparticles[J].Microporous and Mesoporous Materials,2021,328:111491.
[37]PANG J,LUAN Y,YANG X,et al.Functionalized mesoporous silica particles for application in drug delivery system[J].Mini-reviews in Medicinal Chemistry,2012,12(8):775-788.
[38]SABIO R M,MENEGUIN A B,RIBEIRO T C,et al.New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery[J].International Journal of Pharmaceutics,2019,564(10):379-409.
[39]SOHMIYA M,SAITO K,OGAWA M.Host-guest chemistry of mesoporous silicas:precise design of location,density and orientation of mo- lecular guests in mesopores[J].Science and Technology of Advanced Materials,2015,16(5):054201.
[40]WANG Y,WU P,WANG Y,et al.Dendritic mesoporous nanoparticles for the detection,adsorption,and degradation of hazardous substanc-es in the environment:state-of-the-art and future prospects[J].Journal of Environmental Management,2023,345(1):118629.
[41]EMRANI S,EBRAHIMI M,ZHIANI R,et al.Magnetic fibrous silica mesoporous as a selective and efficient system for removal of Cd(II) ions with a focus on optimization by response surface methodology[J].International Journal of Environmental Analytical Chemistry, 2023,103(4):849-867.
[42]SUN Z,GUO D,ZHANG L,et al.Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg 2+ ions[J].Journal of Materials Chemistry B,2015,3(16):3201-3210.
[43]XIE Y,WANG J,WANG M,et al.Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively ad- sorption property for Pb 2+ in aqueous solution[J].Journal of Hazardous Materials,2015,297(30):66-73.
[44]SHABIR J,RANI S,SHARMA M,et al. Synthesis of dendritic fibrous nanosilica over a cubic core(cSiO 2 @DFNS)with catalytically efficient silver nanoparticles for reduction of nitroarenes and degradation of organic dyes[J].RSC Advances,2020,10(14):8140-8151.
[45]FUERTES A B,VALLEVIGON P,SEVILLA M.Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules[J].Journal of Colloid and Interface Science,2010,349(1):173-180.
[46]ELYERDI S M M,SARVI M N,O’CONNOR A J.Synthesis of ultra small nanoparticles(<50 nm)of mesoporous MCM-48 for bio-adsorption[J].Journal of Porous Materials,2019,26(3):839-846.
[47]ZHANG Y,GU Z,LIU Y,et al. Benzene-bridged organosilica modified mesoporous silica nanoparticles via an acid-catalysis approach[J].Langmuir,2021,37(8):2780-2786.
[48]SHIN H S,HWANG Y K,HUH S. Facile preparation of ultra-large pore mesoporous silica nanoparticles and their application to the encapsulation of large guest molecules[J].ACS Applied Materials & Interfaces,2014,6(3):1740-1746.
[49]NA H K,KIM M H,PARK K,et al.Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores [J].Small,2012,8(11):1752-1761.
[50]NIU D,LIU Z,LI Y,et al.Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magne-tic functionalization and gene delivery[J].Advanced Materials,2014,26(29):4947-4953.
[51]VALLET‐REGI M,RÁMILA A,DEL REAL R P,et al.A new property of MCM-41:drug delivery system[J].Chemistry of Materials,2001,13(2):308-311.
[52]HORCAJADA P,RÁMILA A,PÉREZPARIENTE J,et al.Influence of pore size of MCM-41 matrices on drug delivery rate[J].Microporous and Mesoporous Materials,2004,68(1/2/3):105-109.
[53]GUO Y,GOU K,YANG B,et al.Enlarged pore size chiral mesoporous silica nanoparticles loaded poorly water-soluble drug perform sup-erior delivery effect[J].Molecules,2019,24(19):3552.
[54]WANG L,YAMAUCHI Y.Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward hi-ghly active electrocatalysts[J]. Chemistry−A European Journal,2011,17(32):8810-8815.
[55]MIHALCIK D J,LIN W.Mesoporous silica nanosphere-supported chiral ruthenium catalysts:synthesis,characterization,and asymmetric hydrogenation studies[J].ChemCatChem,2009,1(3):406-413.
[56]BRITO J C F P,MILETTO I,MARCHESE L,et al.Hierarchical SAPO−34 catalysts as host for Cu active sites[J].Materials,2023,16(16): 5694.
[57]DAS S,SAHU S,BANDYOPADHYAYA R,et al.Porous silica nanospheres:a nanoplatform towards protein immobilization and cogent design of biosensors for aromatic water pollutant detection[J].Environmental Science:Nano,2023,10:2799-2809.
[58]GUI J,CHEN H,LIU J,et al.Consuming intracellular glucose and regulating the levels of O 2 /H 2 O 2 via the closed cascade
catalysis system of Cu−CeO 2 nanozyme and glucose oxidase[J].Journal of Colloid and Interface Science,2023,651:191-199.
[59]HAN Z P,WANG S,SUN Q,et al.Synthesis of azoxy compounds:from copper compounds to mesoporous silica-encaged ultrasmall copper catalysts[J].ChemSusChem,2023,16(17):e202300477.
[60]KOLEKAR Y A,SAPTAL V B,BHANAGE B M.Carbonylative self-coupling of aryl boronic acids using a confined pd catalyst within melamine dendron and fibrous nano-silica:a CO surrogate approach[J].Chemistry-A European Journal,2023,29(50):e202301381.
[61]MARCONI E,LUISETTO I,DI CARLO G,et al.3-APTES on dendritic fibrous mesoporous silica nanoparticles for the pH-controlled release of corrosion inhibitors[J].Nanomaterials,2023,13(18):2543.
[62]HUANG Y,XU S,LIN V S Y.New strategy for enantioselective heterogeneous catalysis: immobilization of both metal nanoparticles and chiral modifiers on mesoporous silica nanoparticles[J].ChemCatChem,2011,3(4):690-694.
[63]WEI J,ZOU L,LI Y,et al.Synthesis of core−shell-structured mesoporous silica nanospheres with dual-pores for biphasic catalysis [J].New Journal of Chemistry,2019,43(15):5833-5838.
[64]YANG J,SHEN D,WEI Y,et al.Monodisperse core−shell structured magnetic mesoporous aluminosilicate nanospheres with large dendri-tic mesochannels[J].Nano Research,2015, 8(8): 2503-2514.
[65]HU D,LI H,MEI J,et al.Ultrasmall particle sizes of walnut-like mesoporous silica nanospheres with unique large pores and tunable acidity for hydrogenating reaction[J].Small,2020,16(29):2002091.
[66]KALANTARI M,YU M,JAMBHRUNKAR M,et al.Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production[J]. Materials Chemistry Frontiers, 2018, 2(7): 1334-1342.
[67]PELLUAU T,SENE S,GARCIACIRERA B,et al.Multifunctionalized mesostructured silica nanoparticles containing Mn2 complex for improv-ed catalase-mimicking activity in water[J].Nanomaterials,2022,12(7):1136.
[68]KALANTARI M,YU M,YANG Y,et al.Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis [J].Nano Research,2017,10(2):605-617.
[69]CHANG R H Y,JANG J,WU K C W.Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion[J].Green Chemistry,2011,13(10):2844-2850.
[70]QIN L M,NIU D C,LI N,et al.Hydrophobicity-induced electrostatic interfacial self-assembly for porous silica nanospheres with tunable pore sizes and pore hierarchies[J].Chemical Engineering Journal,2021,405(1):126936.
[71]ZHANG S,KRUK M.Synthesis of bridged-organosilica nanotubes with widely adjustable inner diameter based on temperature-dependent templating by swollen mixed surfactant micelles[J].Microporous and Mesoporous Materials,2023,349(1):112433.
[72]YANG J H,MOHANAN S,RUBAN A M,et al.Calcination-free nanoarchitectonics of mesoporous conducting polymer@silica hybrids with ul- tra-large pores and their enhanced protein adsorption capacity[J].Microporous and Mesoporous Materials,2022,346:112324.
[73]TAKEI T,TAKIMOTO K,TAKABAYASHI T,et al.Preparation of Mg,Ca,or Sr-included mesoporoussilica from glass bottle waste for recov-ery of rare earth metal elements[J].New J Chem,2024,48,6088-6094.