李永峰1,3 ,梁麒懿1 ,刘 智2 ,程 高1 ,姬文晋1 ,窦永深3 ,刘三毛3
1. 广东工业大学 轻工化工学院,广东 广州 510006;2. 美的集团 佛山市顺德区美的洗涤电器制造有限公司,广东 佛山 528311;
3. 佛山市顺德区金磊环保科技有限公司,广东 佛山 528308
李永峰,梁麒懿,刘智,等 . 金属基底整体式催化剂的制备及其在气态污染物催化氧化中的应用[J]. 中国粉体技术,2025,31(2):1-18.
LI Yongfeng, LIANG Qiyi, LIU Zhi, et al. Preparation of metal-based monolithic catalysts and their application in catalytic oxi⁃dation of gaseous pollutants[J]. China Powder Science and Technology,2025,31(2):1−18.
DOI:10.13732/j.issn.1008-5548.2025.02.017
收稿日期:2024-07-26,修回日期:2024-10-30,上线日期:2025-02-24。
基金项目:国家自然科学基金项目,编号:22278086。
第一作者简介:李永峰(1976—),男,教授,博士,博士生导师,广州市珠江科技新星,研究方向为大气污染物净化治理。E-mail:gdliyf@gdut. edu. cn。
摘要:【目的】 控制挥发性有机物和O3等气态污染物对人类健康和生态环境的危害,梳理金属基底整体式催化剂的制备及在气态污染物催化氧化中的应用。【研究现状】综述气态污染物治理方法,梳理整体式催化剂的特点与优势,包括陶瓷、金属基底整体式催化剂;概括制备方法,包括传统的浸渍法、涂覆法、喷涂法、水热法、电沉积法、化学镀自沉积法、原电池静电置换法;总结电辅助技术在金属基底整体式催化剂的应用。【结论与展望】提出在金属基底表面直接原位生长过渡金属氧化物活性层的原电池静电置换和化学镀自沉积等新方法,不但可以显著提高催化剂中活性组分在光滑金属基底表面的分布均匀性与负载牢固度,而且可以通过同时负载价格低廉的金属氧化物活性组分与贵金属进行协同催化,降低催化剂制备成本;认为在金属基底整体式催化剂上引入电致热内部直接供热和电辅助催化氧化等新反应模式,可以显著降低反应能量消耗,提高催化剂活性与稳定性。
关键词:挥发性有机物;臭氧;整体式催化剂;催化氧化
Significance Developing effective and scalable treatment methods to reduce emissions of gaseous pollutants, such as volatile organic compounds (VOCs) and ozone, is essential for mitigating their harmful effects on human health and the ecological envi⁃ronment. This study reviews the preparation of metal-based monolithic catalysts and their applications in catalytic oxidation of gaseous pollutants.
Progress Catalytic oxidation is advantageous for gaseous pollutant treatment due to its high purification efficiency, wide applicability for various raw materials, low secondary pollution, and overall economic viability. Compared with traditional granular catalysts, metal-based monolithic catalysts offer notable benefits, including high mechanical strength, low bed pressure drop, efficient heat transfer, and effective mass transfer. This paper summarizes and analyzes aspects such as types of structured metallic substrates, preparation methods for monolithic catalysts, and application of electric-assisted technologies in the purification of gaseous pollutants.
Conclusions and Prospects New methods are proposed for the in-situ growth of transition metal oxide active layers on structured metallic substrates, including electroless plating self-deposition and one-step method utilizing redox reactions between two galvanic cells. These methods improve the dispersion uniformity and the adhesion strength of active components on smooth metal surfaces while reducing catalyst production costs by incorporating low-cost metal oxides for synergistic catalysis. Additionally,introducing novel electric-assisted technologies such as direct internal heating via electrothermal effects and electric-assisted catalytic oxidation can greatly reduce energy consumption and improve the activity and stability in the catalytic oxidation of gaseous pollutants.
Keywords:volatile organic compounds; ozone; monolithic catalyst; catalytic oxidation
参考文献(References)
[1]LU Z H, GUO L, SHEN Q Y, et al. The application of metal-organic frameworks and their derivatives in the catalytic oxidation of typical gaseous pollutants: recent progress and perspective[J]. Separation and Purification Technology, 2024, 340:126772.
[2]ZHAI Y X, YE J Y, ZHANG Y B, et al. Excellent sensing platforms for identification of gaseous pollutants based on metal-organic frameworks: a review[J]. Chemical Engineering Journal, 2024, 484: 149286.
[3]ACHEBAK H, GARATACHEA R, PAY M T, et al. Geographic sources of ozone air pollution and mortality burden in Europe[J]. Nature Medicine, 2024, 3(6): 1732-1738.
[4]ZHENG Y F, FU K X, YU Z H, et al. Oxygen vacancies in a catalyst for VOCs oxidation: synthesis, characterization, and catalytic effects[J]. Journal of Materials Chemistry A, 2022, 10(27): 14171-14186.
[5]LOU B Z, SHAKOOR N, ADEEL M, et al. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst:current advancement and future prospectives[J]. Journal of Cleaner Production, 2022, 363: 132523.
[6]REN Y C, GUAN X, PENG Y B, et al. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry[J]. Journal of Environmental Management, 2024, 357: 120730.
[7]HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568.
[8]李同囡, 邱嘉馨, 房春生. 环境中臭氧的危害与防治浅析[J]. 世界环境, 2020(5): 16-18.
LI T N, QIU J X, FANG C S. A brief analysis of the hazards of ozone in the environment and relevant prevention and treatment[J]. World Environment, 2020(5): 16-18.
[10]LYU X P, LI K, GUO H, et al. A synergistic ozone-climate control to address emerging ozone pollution challenges[J]. One Earth, 2023, 6(8): 964-977.
[11]WANG D T, YUAN C, YANG C M, et al. Recent advances in catalytic removal volatile organic compounds over metal-organic framework-derived catalysts: a review[J]. Separation and Purification Technology, 2023, 326: 124765.
[12]SUBRAHMANYAM C, BULUSHEV D A, KIWI-MINSKER L. Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature[J]. Applied Catalysis B: Environmental, 2005, 61(1/2): 98-106.
[13]PETA S, ZHANG T, DUBOVOY V, et al. Facile synthesis of efficient and selective Ti-containing mesoporous silica catalysts for toluene oxidation[J]. Molecular Catalysis, 2018, 444: 34-41.
[14]CHANG Z S, WANG C, ZHANG G J. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers, 2020, 17(4): 279-322.
[15]罗文旺, 戴文灿, 李东鸣, 等. 工业源常见VOCs治理技术的研究进展[J]. 广东化工, 2017, 44(16): 122-123.
LUO W W, DAI W C, LI D M, et al. Research progress of common treatment technology of VOCs for industrial sources[J].Guangdong Chemical Industry, 2017, 44(16): 122-123.
[16]KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs):a review[J]. Atmospheric Environment, 2016, 140: 117-134.
[17]印红玲, 谢家理, 杨庆良, 等. 臭氧在金属氧化物上的分解机理[J]. 化学研究与应用, 2003, 15(1): 1-5.
YIN H L, XIE J L, YANG Q L, et al. Mechanism of ozone decomposition on the surface of metal oxide[J]. Chemical Research and Application, 2003, 15(1): 1-5.
[18]LI J, NING Y P, LIU X Y, et al. Preparation of enhanced visible light-responsive photocatalytic paper containing Ag/N-TiO2 aerogel for detoxification of environmental pollutants[J]. Cellulose, 2024, 31(3): 1827-1841.
[19]XIE R J, LEI D X, ZHAN Y J, et al. Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process[J]. Chemical Engineering Journal, 2020, 386: 121025.
[20]金乐娟. 挥发性有机废气治理技术分析[J]. 中国资源综合利用, 2021, 39(11): 167-169.
JIN L J. Analysis of volatile organic waste gas treatment technology[J]. China Resources Comprehensive Utilization, 2021,39(11): 167-169.
[21]SUN Z B, SI Y N, ZHAO S N, et al. Ozone decomposition by a manganese-organic framework over the entire humidity range[J]. Journal of the American Chemical Society, 2021, 143(13): 5150-5157.
[22]BURGOS N, PAULIS M, MIRARI ANTXUSTEGI M, et al. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths[J]. Applied Catalysis B: Environmental, 2002, 38(4): 251-258.
[23]MILLOT Y, COSTENTIN G, RODIGUE C, et al. Deciphering the improvement in (H2-) C3H6-SCR performance of Ag/Al2O3 catalysts prepared from warm-water-treated alumina: a NMR-assisted identification of the Ag anchoring sites of the alumina support[J]. Applied Catalysis B: Environment and Energy, 2024, 351: 123975.
[24]王丹君, 杨智云, 山东明. 挥发性有机污染物催化燃烧催化剂研究进展[J]. 山东化工, 2024, 53(3): 101-104.
WANG D J, YANG Z Y, SHAN D M. Research progress of catalytic combustion catalysts for volatile organic pollutants[J].Shandong Chemical Industry, 2024, 53(3): 101-104.
[25]WANG H Y, WANG X W, REN Y L, et al. Macrostructural design approach of the monolithic catalyst and its application in nitrobenzene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2024: 31(3): 1827-1841.
[26]赵朴臻, 柳楚, 黄前霖, 等. 基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究[J]. 环境工程, 2023, 41(4): 71-78.
ZHAO P Z, LIU C, HUANG Q L, et al. Fabrication of nickel foam based MnO2 monolithic catalysts and its application in catalytic elimination of toluene[J]. Environmental Engineering, 2023, 41(4): 71-78.
[27]麦荣坚, 李永峰, 余林, 等. VOCs催化燃烧整体式催化剂的研究进展[J]. 化工新型材料, 2010, 38(8): 24-26.
MAI R J, LI Y F, YU L, et al. Latest researches of the monolithic catalysts for catalytic combustion of VOCs[J]. New Chemical Materials, 2010, 38(8): 24-26.
[28]王博磊, 钟和香, 张晶, 等. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14):124-132.
WANG B L, ZHONG H X, ZHANG J, et al. Research progress of ceramic-based monolithic catalysts for the catalytic combustion of VOCs[J]. Materials Reports, 2022, 36(14): 124-132.
[29]GUAN Y N, ZHOU Y T, JIANG C H, et al. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts[J]. Microporous and Mesoporous Materials, 2021, 323: 111173.
[30]LU H F, ZHOU Y, HUANG H F, et al. In⁃situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. Journal of Rare Earths, 2011, 29(9): 855-860.
[31]李永峰, 黄燕亭, 王辉, 等. 新型Pt基整体式催化剂的结构与催化性能[J]. 中国粉体技术, 2014, 20(4): 43-47.
LI Y F, HUANG Y T, WANG H, et al. Structure and catalytic performance of new Pt-based monolithic catalyst[J]. China Powder Science and Technology, 2014, 20(4): 43-47.
[32]李永峰, 张碧欣, 文武, 等. 无过渡涂层铂基整体式催化剂的制备和应用[J]. 现代化工, 2014, 34(8): 110-113.
LI Y F, ZHANG B X, WEN W, et al. Preparation and application of Pt-based monolithic catalysts without interlayer coating[J]. Modern Chemical Industry, 2014, 34(8): 110-113.
[33]李永峰, 刘祖超, 余林, 等. 一种低含量贵金属整体式催化剂的制备方法及其应用: CN101733165A[P]. 2010-06-16.
LI Y F, LIU Z C, YU L, et al. Preparation method and application of low-content noble metal monolithic catalysts: CN101733165A[P]. 2010-06-16.
[34]QIU J, WANG W, WANG J L, et al. Efficient monolithic MnOx catalyst prepared by heat treatment for ozone decomposition[J]. Environmental Science and Pollution Research International, 2022, 29(29): 44324-44334.
[35]FENG S Y, LIU J D, GAO B. Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion[J]. Chemical Engineering Journal, 2022, 429: 132302.
[36]QI M J, LI Z, ZHANG Z, et al. Controllable synthesis of MnO2/iron mesh monolithic catalyst and its significant enhancement for toluene oxidation[J]. Chinese Chemical Letters, 2023, 34(2): 107437.
[37]AGUENIOU F, VIDAL H, YESTE M P, et al. Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane[J]. Catalysis Today, 2022, 383: 226-235.
[38]李永峰, 杨天缘, 叶非华, 等. 一种整体式电致热波形片催化剂的制备及应用: CN116943684A[P]. 2023-10-27.
LY Y F, YANG T Y, YE F H, et al. Preparation method and application of monolithic electrothermal waveform catalysts:CN116943684A[P]. 2023-10-27.
[39]SUN P F, CHENG L J, CHEN S, et al. Nickel foam based monolithic catalyst supporting transition metal oxides for toluene combustion: experimental and theoretical study of interfacial synergistic oxidation and water resistance[J]. Chemical Engineering Journal, 2024, 483: 149176.
[40]李永峰, 何家俊, 戴镇坛, 等. 一种碱性体系中金属基底负载型催化剂及其制备方法和应用: CN112958111B[P].2023-02-03.
LI Y F, HE J J, DAI Z T, et al. Preparation method and application of metal-based catalysts in alkaline system: CN112958111B[P]. 2023-02-03.
[41]李宇, 李永峰, 吴青青, 等. 金属基体整体式催化剂的制备及在VOCs催化燃烧中的应用研究进展[J]. 化工进展, 2011, 30(4): 759-765.
LI Y, LI Y F, WU Q Q, et al. Preparation of monolithic catalyst with metallic substrate and application in catalytic combustion of VOCs[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 759-765.
[42]PAULETTO G, VACCARI A, GROPPI G, et al. FeCrAl as a catalyst support[J]. Chemical Reviews, 2020, 120(15): 7516-7550.
[43]LI H, WANG Y, CHEN X, et al. Preparation of metallic monolithic Pt/FeCrAl fiber catalyst by suspension spraying for VOCs combustion[J]. RSC Advances, 2018, 8(27): 14806-14811.
[44]余林, 潘霁飞, 李永峰, 等. 一种钯基金属载体催化剂及其制备方法和应用: CN101695664[P]. 2010-04-21.
YU L, PAN Q F, LI Y F, et al. Preparation method and application of palladium-based metal-supported catalysts: CN101695664[P]. 2010-04-21.
[45]EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139.
[46]BARBERO B P, COSTA-ALMEIDA L, SANZ O, et al. Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds[J]. Chemical Engineering Journal, 2008, 139(2): 430-435.
[47]TZANEVA B R, NAYDENOV A I, TODOROVA S Z, et al. Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion[J]. Electrochimica Acta, 2016, 191: 192-199.
[48]田景晨, 吴功德, 刘雁军, 等. 铝蜂窝负载锰基催化剂的制备及其在室温下去除低含量甲醛的性能[J]. 石油学报(石油加工), 2023, 39(1): 68-78.
TIAN J C, WU G D, LIU Y J, et al. Preparation of manganese-based catalyst supported by aluminum honeycomb and its removal performance for low content formaldehyde at room temperature[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(1): 68-78.
[49]FENG X B, XIA L H, JIANG Z Y, et al. Dramatically promoted toluene destruction over Mn@Na-Al2O3@Al monolithic catalysts by Ce incorporation: oxygen vacancy construction and reaction mechanism[J]. Fuel, 2022, 326: 125051.
[50]WANG D T, JIANG L X, TIAN M J, et al. Efficacious destruction of typical aromatic hydrocarbons over CoMn/Ni foam monolithic catalysts with boosted activity and water resistance[J]. Journal of Colloid and Interface Science, 2024, 668: 98-109.
[51]HUANG Q L, ZHAO P Z, LYU L, et al. Redox-induced in situ growth of MnO2 with rich oxygen vacancies over monolithic copper foam for boosting toluene combustion[J]. Environmental Science & Technology, 2023, 57(24): 9096-9104.
[52]FU K X, SU Y, ZHENG Y F, et al. Novel monolithic catalysts for VOCs removal: a review on preparation, carrier and energy supply[J]. Chemosphere, 2022, 308: 136256.
[53]MO S P, ZHANG Q, REN Q M, et al. Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement[J]. Journal of Hazardous Materials, 2019, 364: 571-580.
[54]LI J R, WANG F K, HE C, et al. Catalytic total oxidation of toluene over carbon-supported CuCo oxide catalysts derived from Cu-based metal organic framework[J]. Powder Technology, 2020, 363: 95-106.
[55] ZHENG Y F, SU Y, PANG C H, et al. Interface-enhanced oxygen vacancies of CoCuOx catalysts in situ grown on monolithic Cu foam for VOC catalytic oxidation[J]. Environmental Science & Technology, 2022, 56(3): 1905-1916.
[56] RAHIMI M G, WANG A Q, MA G J, et al. A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition[J]. RSC Advances, 2020, 10(67): 40916-40922.
[57] YANG L, LI J, CAO G Q, et al. Flexible monolithic Pt/CuO-Fe2O3/TiO2 catalysts integrated on Ti mesh for efficient NO removal via CO-SCR reaction[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111262.
[58] HUANG L, ZHENG M F, YU D Q, et al. In⁃situ fabrication and catalytic performance of Co-Mn@CuO core-shell nanowires on copper meshes/foams[J]. Materials & Design, 2018, 147: 182-190.
[59] MUSIALIK-PIOTROWSKA A. Destruction of trichloroethylene (TCE) and trichloromethane (TCM) in the presence of selected VOCs over Pt-Pd-based catalyst[J]. Catalysis Today, 2007, 119(1/2/3/4): 301-304.
[60] TANG X Y, TARIQ N U H, WANG J C, et al. CuO/TiO2/Ti monolithic catalysts for low-temperature CO oxidation[J]. ACS Applied Nano Materials, 2024, 7(1): 809-817.
[61] LI Y F, LI Y, YU Q, et al. The catalytic oxidation of toluene over Pd-based FeCrAl wire mesh monolithic catalysts prepared by electroless plating method[J]. Catalysis Communications, 2012, 29: 127-131.
[62] LI Y F, FAN Y, JIAN J M, et al. Pt-based structured catalysts on metallic supports synthesized by electroless plating deposition for toluene complete oxidation[J]. Catalysis Today, 2017, 281: 542-548.
[63] LIU F F, XU Z H, FENG Y, et al. A facile one-step method for the fabrication of Pd-AlOOH/Al monolithic catalysts via redox reactions of two galvanic cells[J]. Journal of Materials Science, 2021, 56(3): 2549-2558.
[64] WANG J, WANG P F, ZHAO Q, et al. Stable hetero-metal doped Co-based catalysts prepared by electrodeposition method for low temperature combustion of toluene[J]. Carbon Resources Conversion, 2020, 3: 95-103.
[65] LIU W J, ZHANG Z, ZHU C, et al. Monolithic catalysts loaded with ZIF-derived Co3O4 on copper foam for the catalytic oxidation of toluene: the impact of synthetic methods[J]. Journal of Materials Chemistry A, 2024, 12(38): 26038-26055.
[66] LI Y X, LUO C M, LIU Z L, et al. Catalytic oxidation characteristics of CH4 air mixtures over metal foam monoliths[J]. Applied Energy, 2015, 156: 756-761.
[67] XU L, CHEN J T, ZHAO P C, et al. Stable loading of TiO2 catalysts on the surface of metal substrate for enhanced photocatalytic toluene oxidation[J]. Molecules, 2023, 28(17): 6187.
[68] JIANG L, YANG N, ZHU J Q, et al. Preparation of monolithic Pt-Pd bimetallic catalyst and its performance in catalytic combustion of benzene series[J]. Catalysis Today, 2013, 216: 71-75.
[69]YANG L, LI J, LIU B D. Recent advances of monolithic metal mesh-based catalysts for CO oxidation[J]. ChemCatChem,2024: 56(3): 1905-1916.
[70]周丽娜, 陈耀强, 任成军, 等. Pd/MnOx+Pd/γ-Al2O3整体式催化剂降解地表臭氧[J]. 无机化学学报, 2013, 29(11):2363-2369.
ZHOU L N, CHEN Y Q, REN C J, et al. Pd/MnOx+Pd/γ-Al2O3 monolith catalysts for ground-level ozone decomposition[J].Chinese Journal of Inorganic Chemistry, 2013, 29(11): 2363-2369.
[71]CHEN X, ZHAO Z L, ZHOU Y, et al. A facile route for spraying preparation of Pt/TiO2 monolithic catalysts toward VOCs combustion[J]. Applied Catalysis A: General, 2018, 566: 190-199.
[72] XIA D T, ZHANG X, TAN B J, et al. Introducing attapulgite to prepare manganese-based monolithic catalyst for catalytic combustion of toluene[J]. Journal of Solid State Chemistry, 2024, 338: 124896.
[73] YAO J F, DONG F, FENG H, et al. Hierarchical MnOx/Co3O4 nanoarrays on Ni foam for catalytic oxidation of volatile organic compounds[J]. ACS Applied Nano Materials, 2021, 4(9): 9322-9332.
[74] WANG K, YUAN M N, CAO X C, et al. Effect of hydrothermal method temperature on the spherical flowerlike nanostructures NiCo(OH)4-NiO[J]. Nanomaterials, 2022, 12(13): 2276.
[75] PORE O C, FULARI A V, CHAVARE C D, et al. Synthesis of NiCo2O4 microflowers by facile hydrothermal method: effect of precursor concentration[J]. Chemical Physics Letters, 2023, 824: 140551.
[76] LIU G, YU J H, CHEN L, et al. Promoting diesel soot combustion efficiency over hierarchical brushlike α-MnO2 and Co3O4 nanoarrays by improving reaction sites[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13935-13949.
[77]LI S D, MO S P, WANG D D, et al. Synergistic effect for promoted benzene oxidation over monolithic CoMnAlO catalysts derived from in situ supported LDH film[J]. Catalysis Today, 2019, 332: 132-138.
[78]LIU W J, DONG B Q, CHEN P Y, et al. Effect of electrodeposition potential on the growth mechanism and corrosion resistance of Zn/Al layered double hydroxide film on steel substrate via electrodeposition-hydrothermal method[J]. Journal of Building Engineering, 2024, 97: 110831.
[79]KABOLI A, ESFANDIARI N, DARBAND G B, et al. Electrodeposition of Fe-Co-Ni coating by cyclic voltammetry for efficient hydrogen production[J]. Journal of Electroanalytical Chemistry, 2024, 958: 118151.
[80]WU Y L, ZHOU Z X, YAO Q, et al. Electrodeposition nanoarchitectonics of nickel cobalt phosphide films from methyltriphenylphosphonium bromide-ethylene glycol deep eutectic solvent for hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2023, 942: 169070.
[81]POIMENIDIS I A, PAPAKOSTA N, KLINI A, et al. Electrodeposited Ni foam electrodes for increased hydrogen production in alkaline electrolysis[J]. Fuel, 2023, 342: 127798.
[82]HO P H, AMBROSETTI M, GROPPI G, et al. One-step electrodeposition of Pd-CeO2 on high pore density foams for environmental catalytic processes[J]. Catalysis Science & Technology, 2018, 8(18): 4678-4689.
[83]李永峰, 刘祖超, 麦荣坚, 等. Pd基无涂层整体式催化剂上甲苯催化燃烧净化研究[J]. 燃料化学学报, 2011, 39(9):712-716.
LI Y F, LIU Z C, MAI R J, et al. Catalytic combustion of toluene on Pd-based monolithic catalyst without coating[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 712-716.
[84]李永峰, 刘芳芳, 许泽华, 等. 一种锰氧化物贵金属复合型催化剂、制备方法及其应用: CN109317145B[P]. 2021-07-13.
LI Y F, LIU F F, XU Z H, et al. Preparation method and application of manganese oxide-noble metal composite catalysts:CN109317145B[P]. 2021-07-13.
[85]LIU F F, WANG H M, DAI Z T, et al. Pd-AlOOH/Al honeycomb monolith catalysts obtained from Pd(II) complex precursor with different ligands by a facile one-step method[J]. Bulletin of the Chemical Society of Japan, 2021, 94(5): 1631-1636.
[86]MEI X Y, ZHU X B, ZHANG Y X, et al. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts[J]. Nature Catalysis, 2021, 4: 1002-1011.
[87]CHEN X, LI J Y, WANG Y, et al. Preparation of nickel-foam-supported Pd/NiO monolithic catalyst and construction of novel electric heating reactor for catalytic combustion of VOCs[J]. Applied Catalysis A: General, 2020, 607: 117839.
[88]WANG K, ZENG Y J, LIN W Z, et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths[J]. Carbon, 2020, 167: 709-717.
[89]LI J J, LU X F, WU F, et al. Metallic-substrate-supported manganese oxide as Joule-heat-ignition catalytic reactor for removal of carbon monoxide and toluene in air[J]. Chemical Engineering Journal, 2017, 328: 1058-1065.
[90]DU P, WANG R Y, DENG B H, et al. In⁃situ Joule-heating drives rapid and on-demand catalytic VOCs removal with ultralow energy consumption[J]. Nano Energy, 2022, 102: 107725.
[91]LI Y F, ZHANG X M, LIANG Q Y. Electrothermal toluene oxidation by utilizing Joule heat from Pd/FeCrAl electrified metallic monolith catalyst[J]. Applied Surface Science, 2024, 658: 159827.
[92]NAMDARI M, LEE C S, HAGHIGHAT F. Active ozone removal technologies for a safe indoor environment: a comprehensive review[J]. Building and Environment, 2021, 187: 107370.
[93]ZHANG L, WANG S, LYU L R, et al. Insights into the reactive and deactivation mechanisms of manganese oxides for ozone elimination: the roles of surface oxygen species[J]. Langmuir, 2021, 37(4): 1410-1419.
[94]FANG C T, LI D D, WANG X F, et al. Exploring an efficient manganese oxide catalyst for ozone decomposition and its deactivation induced by water vapor[J]. New Journal of Chemistry, 2021, 45(23): 10402-10408.
[95]RYU S H, KIM G, GUPTA S, et al. Improved resistance to water poisoning of Pd/CeO2 monolithic catalysts by heat treatment for ozone decomposition[J]. Chemical Engineering Journal, 2024, 485: 149487.
[96]HOU Z Q, DAI L Y, DENG J G, et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst[J]. Angewandte Chemie (International Ed), 2022, 61(27): e202201655.
[97]HUANG W X, ZHANG X R, YANG A C, et al. Enhanced catalytic activity for methane combustion through in situ water sorption[J]. ACS Catalysis, 2020, 10(15): 8157-8167.
[98]JI J, YU Y, CAO S, et al. Enhanced activity and water tolerance promoted by Ce on MnO/ZSM-5 for ozone decomposition[J]. Chemosphere, 2021, 280: 130664.
[99]CUI Y R, CHEN J Z, PENG B, et al. Onset of high methane combustion rates over supported palladium catalysts: from isolated Pd cations to PdO nanoparticles[J]. JACS Au, 2021, 1(4): 396-408.
[100]OU J L, ZHAO T X, XIONG W J, et al. Water-resistant FLPs-polymer as recyclable catalysts for selective hydrogenation of alkynes[J]. Chemical Engineering Journal, 2023, 477: 147248.
[101]BAVASSO I, MONTANARO D, PETRUCCI E. Ozone-based electrochemical advanced oxidation processes[J]. Current Opinion in Electrochemistry, 2022, 34: 101017.
[102]李永峰, 王鸿绵, 何家俊, 等. 一种含锰整体式电辅助金属蜂窝催化剂及其制备方法和应用: CN113477246B[P]. 2023-08-01.
LI Y F, WANG H M, HE J J, et al. Preparation method and application of manganese-containing monolithic electric-assisted metal honeycomb catalysts: CN113477246B[P]. 2023-08-01.
[103]LI Y F, HE J J, WANG H M. Exploring an electric-aid ozone decomposition mode to enhance water resistance over manganese oxide monolith catalyst under high humidity[J]. Journal of Hazardous Materials, 2022, 436: 129252.