马文庆1,2,3 ,简天真1 ,马建平3 ,李现红3 ,高海洋3 ,刘 宏1,2
1. 济南大学 前沿交叉科学研究院,化学化工学院,山东 济南 250022;2. 山东大学 晶体材料国家重点实验室,山东 济南 250100;3. 山东圣阳电源股份有限公司,山东 济宁 273100
引用格式:
马文庆,简天真,马建平,等. 用于Li-CO2电池的过渡金属及其合金催化剂研究进展[J]. 中国粉体技术,2024,30(6):1-14.
MA Wenqing, JIAN Tianzhen, MA Jianping, et al. Research progress on transition metals and their alloy catalysts for Li-CO2 batteries[J]. China Powder Science and Technology,2024,3(6):1−14.
收稿日期:2024-06-02,修回日期:2024-09-15,上线日期:2024-10-16。
基金项目:国家自然科学基金项目,编号:52201254;山东省自然科学基金项目,编号: ZR2020QE012。
第一作者简介:马文庆(1989—),男,副教授,博士,硕士生导师,研究方向为电化学能量转化与存储。E-mail:ifc_mawq@ujn. edu. cn。
通信作者简介:刘宏(1964—),男,教授,博士,博士生导师,研究方向为纳米能源材料、人工晶体材料、组织干细胞分化等。E-mail:ifc_liuh@ujn. edu. cn。
摘要:【目的】 提升锂-二氧化碳(Li-CO2)电池的反应可逆性和动力学特性,概括Li-CO2电池的简史、结构、工作原理以及关键科学问题,综述用于 Li-CO2电池的过渡金属及其合金催化剂的成分、形貌、微观结构等特性及其对 Li-CO2电池性能的影响,分析过渡金属及其合金催化剂在催化过程中的作用机制和演化行为。【研究现状】过渡金属对反应物吸附与活化、放电产物沉积及分解具有促进作用。基于过渡金属元素构筑的单金属和双金属正极催化剂,在Li-CO2电池中的催化活性、作用机制及其自身在催化过程中的演化各不相同。金属间化合物具有显著区别于固溶合金、单分散双金属、单一金属的化学微环境,因此在促进反应物种吸附与活化、产物分解等方面表现出独特优势。【结论与展望】过渡金属及其合金催化剂的未来研究方向有:调控催化剂宏观形貌和表面微结构;监测催化过程中催化剂结构与成分演化、放电产物沉积与分解行为;建立适用于Li-CO2 电池的催化剂关键“描述符”;开发低成本催化剂量产工艺。
Significance To enhance the reversibility and kinetics of Li-CO2 batteries, this paper summarizes the history, structure,working principle, and key scientific challenges of Li-CO2batteries. It reviews the composition, morphology, microstructure,and other characteristics of transition metal and alloy catalysts used in Li-CO2 batteries and analyzes their impact on battery performance. Furthermore, the catalytic mechanisms and evolutionary behaviors of these catalysts during the reaction process are examined.
Progress Transition metals exhibit incomplete d orbitals, abundant and adjustable valence states, and ease of processing,allowing them for broad applications in Li-CO2batteries. 3 d transition metals such as Ni, Co, Fe, Cu, and Zn,4 d transitionmetals such as Ru,Pd,and Ag,and 5d transition metals such as Ir and Au, all promote reactant adsorption and activation, as well as the deposition and decomposition of discharge products. Single-metal and bimetallic cathode catalysts constructed based on these elements show different catalytic activities, mechanisms, and evolutionary behaviors during catalytic process in Li-CO2 batteries. Ni and Co undergo no redox reactions during catalysis. Cu tends to oxidize during charging and cannot effectively catalyze the co-decomposition of Li2CO3and elemental C, while CuO formed through oxidation during charging and discharging can significantly enhance the reversibility of battery reactions. Fe undergoes redox reactions between Fe—O—C and Fe in Li-CO2 batteries. Zn can catalyze CO2reduction to generate Li2CO3and CO products in proton-based Li-CO2 batteries. The electron configuration of Pd facilitates the weakening of Li-O bonds and the activation of Li2CO3,exhibiting smaller charge-discharge polarization compared to other precious metals such as Ru, Ag, Ir, and Au. Intermetallic compounds possess unique chemical microenvironments significantly different from those of solid solution alloys, monodisperse bimetals, and single metals in atomic configurations, electronic structures,and chemical bonding, thus demonstrating distinctive advantages in promoting reactant adsorption and activation and product decomposition.
Conclusions and Prospects The study proposes several research directions for transition metals and alloy catalysts. Regulating the macroscopic morphology and surface microstructure of catalysts,as an important means to improve the density and intrinsic activity of active sites, modulate the adsorption and activation of species during reactions,and change the battery reaction pathway. Monitoring the evolution of catalyst structure and composition during the catalytic process, as well as the deposition and decomposition behaviors of discharge products, to summarize the internal relationships between catalyst composition,structure, and performance. This can provide theoretical support for catalyst design, failure analysis, and re-optimization. Establishing key “descriptors” of catalysts suitable for Li-CO2 batteries to reduce trial-and-error processes and promote the development of high-performance catalysts. Developing cost-effective catalyst mass production techniques to select low-cost catalysts that can be applied in practical engineering,thereby guiding scientific research efforts and facilitating the practical development of Li-CO2 batteries.
Keywords:Li-CO2 battery; transition metal; alloy catalyst
[1]SARKAR A, DHARMARAJ V R, YI C H, et al. Recent advances in rechargeable metal-CO2batteries with nonaqueous electrolytes[J]. Chemical Reviews,2023,123(15):9497-9564.
[2]XU C F, DONG Y L, SHEN Y L, et al. Fundamental understanding of nonaqueous and hybrid Na-CO2batteries:challenges and perspectives[J]. Small,2023,19(15): e2206445.
[3]杨坤,张笑盈,张春生,等. 多价金属离子电池插层阴极材料研究进展[J]. 中国有色冶金,2023,52(3):124-133.
YANG K, ZHANG X Y, ZHANG C S, et al. Research status and prospect of intercalation cathode materials for multivalent metal ion batteries[J]. China Nonferrous Metallurgy,2023,52(3):124-133.
[4]牛爱敏,李现红,吕浩然,等. 锂离子电池负极黏结剂研究进展[J/OL]. 聊城大学学报(自然科学版),2024.(2024-09-02)[[2024-10-11].]. https://doi. org/10. 19728/j. issn1672-6634. 2024080002.
NIU A M, LI X H, LYU H R, et al. Research progress of anode binder for lithium ion battery[J/OL]. Journal of Liaocheng University(Natural Science Edition),2024.(2024-09-02)[[2024-10-11].]. https://doi. org/10. 19728/j. issn1672-6634.
[5]肖鹏飞,梅琳,陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术,2024,13(7):2116-2123.
XIAO P F, MEI L, CHEN L B. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage[J]. Energy Storage Science and Technology,2024,13(7):2116-2123.
[6]ZOU J S, LIANG G M, ZHANG F L, et al. Revisiting the role of discharge products in Li-CO2 batteries[J]. Advanced Materials,2023,35(49):2210671.
[7]ZHU K G, LI X, CHOI J, et al. Single-atom cadmium-N4sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime[J]. Advanced Functional Materials,2023,33(25):2213841.
[8]YU W, LIU L M, YANG Y X, et al. N, O-diatomic dopants activate catalytic activity of 3D self-standing graphene carbon aerogel for long-cycle and high-efficiency Li-CO2 batteries[J]. Chemical Engineering Journal,2023,465:142787.
[9]TAKECHI K, SHIGA T, ASAOKA T. A Li-O2/CO2 battery[J]. Chemical Communications,2011,47(12):3463-3465.
[10]XU S M, DAS S K, ARCHER L A. The Li-CO2 battery: a novel method for CO2 capture and utilization[J]. RSC Advances,2013,3(18):6656-6660.
[11]LIU Y L, WANG R, LYU Y C, et al. Rechargeable Li/CO2-O2(2:1) battery and Li/CO2 battery[J]. Energy &Environmental Science,2014,7(2):677-681.
[12]JIAN T Z, MA W Q, XU C X, et al. Intermetallic-driven highly reversible electrocatalysis in Li-CO2 battery over nanoporous Ni3Al/Ni heterostructure[J]. eScience,2023,3(3):100114.
[13]LI X, YANG S X, FENG N N, et al. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance[J].Chinese Journal of Catalysis,2016,37(7):1016-1024.
[14]SAVUNTHARI K V, CHEN C H, CHEN Y R, et al. Effective Ru/CNT cathode for rechargeable solid-state Li-CO2 batteries[J]. ACS Applied Materials & Interfaces,2021,13(37):44266-44273.
[15]NA D, JEONG H, BAEK J, et al. Highly safe and stable Li-CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode[J]. Electrochimica Acta,2022,419:140408.
[16]徐昌藩,房鑫,湛菁,等. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展,2020,32(6):836-850.
XU C F, FANG X, ZHAN J, et al. Progress for metal-CO2batteries: mechanism and advanced materials[J]. Progress in Chemistry,2020,32(6):836-850.
[17]ZHANG Z, ZHANG Z W, LIU P F, et al. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene[J]. Journal of Materials Chemistry A,2018,6(7):3218-3223.
[18]彭玉婷,余澎,张雪,等. 氮掺杂碳纳米管在电催化中的应用[J]. 现代化工,2023,43(12):46-50.
ZHANG Y T, YU P, ZHANG X, et al. Application of nitrogen-doped carbon nanotubes in electrocatalysis[J]. Modern Chemical Industry,2023,43(12):46-50.
[19]GUO C, ZHANG F L, HAN X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery[J].Advanced Materials,2023,35(33): e2302325.
[20]ZHANG X, WANG C Y, LI H H, et al. High performance Li-CO2 batteries with NiO-CNT cathodes[J]. Journal of Materials Chemistry A,2018,6(6):2792-2796.
[21]DONG H Y, JIN C, GAO Y C, et al. Nitrogen and sulfur Co-doped three-dimensional graphene@NiO composite as cathode catalyst for the Li-O2 and Li-CO2 batteries[J]. Materials Research Express,2019,6(11):115616.
[22]ZHANG B W, JIAO Y, CHAO D L, et al. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries[J]. Advanced Functional Materials,2019,29(49):1904206.
[23]LIANG H G, ZHANG Y L, CHEN F, et al. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries[J]. Applied Catalysis B:Environmental,2019,244:559-567.
[24]DING J C, XUE H R, XIAO R, et al. Atomically dispersed Fe-Nx species within a porous carbon framework: an efficient catalyst for Li-CO2 batteries[J]. Nanoscale,2022,14(12):4511-4518.
[25]ZHENG R X, SHU C Z, LI J B, et al. Oxygen vacancy engineering of vertically aligned NiO nanosheets for effective CO2 reduction and capture in Li-CO2 battery[J]. Electrochimica Acta,2021,383:138359.
[26]TSENG C M, HUANG C C, PAI J Y, et al. Co single atom-FeCo alloy-carbon nanotube catalysts on graphene for lithiumoxygen and lithium-carbon dioxide batteries[J]. ACS Sustainable Chemistry & Engineering,2023,11(21):8120-8130.
[27]QU S Y, WANG W J, JU Z F, et al. Incorporated O-CoP nanosheets with an O-P interpenetrated interface as electrocatalytic cathodes for rechargeable Li-CO2 batteries[J]. New Journal of Chemistry,2022,46(43):20957-20964.
[28]YUE G H, LUO X R, HU Z Y, et al. RuO2-x decorated CoSnO3 nanoboxes as a high performance cathode catalyst forLi-CO2 batteries[J]. Chemical Communications,2020,56(78):11693-11696.
[29]THOKA S, CHEN C J, JENA A, et al. Spinel zinc cobalt oxide (ZnCo2O4) porous nanorods as a cathode material for highly durable Li-CO2batteries[J]. ACS Applied Materials & Interfaces,2020,12(15):17353-17363.
[30]JIN Y C, CHEN F Y, WANG J L. Achieving low charge overpotential in a Li-CO2 battery with bimetallic RuCo nanoalloydecorated carbon nanofiber cathodes[J]. ACS Sustainable Chemistry & Engineering,2020,8:2783-2792.
[31]ZOU L, JIANG Y X, CHENG J F, et al. High-capacity and long-cycle lifetime Li-CO2/O2 battery based on dandelion-like NiCo2O4 hollow microspheres[J]. ChemCatChem,2019,11(13):3117-3124.
[32]JIN Y C, LIU Y, SONG L, et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery[J]. Chemical Engineering Journal,2022,430:133029.
[33]ZHOU Q X, XU C X, LI Y X, et al. Synergistic coupling of NiFeZn-OH nanosheet network arrays on a hierarchical porous NiZn/Ni heterostructure for highly efficient water splitting[J]. Science China Materials,2022,65(5):1207-1216.
[34]KIM H S, LEE J Y, YOO J K, et al. Capillary-driven formation of iron nanoparticles embedded in nanotubes for catalyzed lithium-carbon dioxide reaction[J]. ACS Materials Letters,2021,3(6):815-825.
[35]WANG T T, SANG X H, ZHENG W Z, et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries[J]. AdvancedMaterials,2020,32(29): e2002430.
[36]CHEN L, ZHOU J W, ZHANG J X, et al. Copper indium sulfide enables Li-CO2batteries with boosted reaction kinetics and cycling stability[J]. Energy and Environmental Materials,2023,6(5): e12415.
[37]XU Y Y, JIANG C, GONG H, et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries[J]. Nano Research,2022,15(5):4100-4107.
[38]XU Y Y, GONG H, SONG L, et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries[J]. Materials Today Energy,2022,25:100967.
[39]GONG H, YU X Y, XU Y Y, et al. Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanoparticles[J]. Inorganic Chemistry Frontiers,2022,9(7):1533-1540.
[40]高丽,许雪冰,胡超权,等. 高效铂锰合金氧还原催化剂的制备及性能[J]. 中国粉体技术,2023,29(2):1-9.
GAO L, XU X B, HU C Q, et al. Preparation and properties of high efficiency platinum-manganese alloy oxygen reduction catalyst [J]. China Powder Science and Technology,2023,29(2):1-9.
[41]ZHANG Z, YANG C, WU S S, et al. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries[J]. Advanced Energy Materials,2019,9(8):1802805.
[42]JIN Y C, CHEN F Y, WANG J L, et al. Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries[J]. Chemical Engineering Journal,2019,375:121978.
[43]ZOU L, LI R Z, WANG Z L, et al. Synergistic effect of Cu-La0. 96Sr0. 04Cu0. 3Mn0. 7O3-δheterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries[J]. Electrochimica Acta,2021,395:139209.
[44]JENA A, HSIEH H C, THOKA S, et al. Curtailing the overpotential of Li-CO2 batteries with shape-controlled Cu2O as cathode: effect of illuminating the cathode[J]. ChemSusChem,2020,13(10):2719-2725.
[45]WANG H, XIE K Y, YOU Y, et al. Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO
heterostructures for efficient Li-CO2 batteries[J]. Advanced Energy Materials,2019,9(34):1901806.
[46]XIE J F, LIU Q, HUANG Y Y, et al. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO[J]. Journal of Materials Chemistry A,2018,6(28):13952-13958.
[47]JIAN T Z, MA W Q, HOU J G, et al. From Ru to RuAl intermetallic/Ru heterojunction: enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier[J]. Nano Energy,2023,118:108998.
[48]LIN J F, DING J N, WANG H Z, et al. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode[J]. Advanced Materials,2022,34(17):e2200559.
[49]FAN L, SHEN H M, JI D X, et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries[J]. Advanced Materials,2022,34(30): e2204134.
[50]CHENG J, BAI Y Q, LIAN Y B, et al. Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction[J]. ACS Applied Materials & Interfaces,2022,14(16):18561-18569.
[51]XING Y, WANG K, LI N, et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery[J].Matter,2020,2(6):1494-1508.
[52]WANG C Z, SHANG Y, LU Y C, et al. Photoinduced homogeneous RuO2
nanoparticles on TiO2 nanowire arrays:a high-performance cathode toward flexible Li-CO2 batteries[J]. Journal of Power Sources,2020,475:228703.
[53]CHOU S L, DOU S X. Boosting up the Li-CO2 battery by the ultrathin RuRh nanosheet[J]. Matter,2020,2(6):1356-1358.
[54]GUO Z Y, LI J L, QI H C, et al. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode[J].Small,2019,15(29):1803246.
[55]YANG S X, QIAO Y, HE P, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J].Energy & Environmental Science,2017,10(4):972-978.
[56]GU Y, LIU B, ZENG X Y, et al. A flexible Li-CO2 batteries with enhanced cycling stability enabled y a IrO2/carbon fiber self-standing cathode[J]. Electrochimica Acta,2023,443:141951.
[57]RHO Y J, KIM B, SHIN K, et al. Atomically miniaturized bi-phase IrOx/Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li-CO2batteries[J]. Journal of Materials Chemistry A,2022,10(37):19710-19721.
[58]ZHAI Y J, TONG H, DENG J L, et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries[J]. Energy Storage Materials,2021,43:391-401.
[59]WU G, LI X, ZHANG Z, et al. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes[J]. Journal of Materials Chemistry A,2020,8(7):3763-3770.
[60]MAO Y J, TANG C, TANG Z C, et al. Long-life Li-CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth[J]. Energy Storage Materials,2019,18:405-413.
[61]XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Advanced Materials,2018,30(51): e1803124.
[62]WANG C Y, ZHANG Q M, ZHANG X, et al. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries[J]. Small,2018,14(28):1800641.
[63]KONG Y L, GONG H, SONG L, et al. Nano-sized Au particle-modified carbon nanotubes as an effective and stable cathode for Li-CO2 batteries[J]. European Journal of Inorganic Chemistry,2021,2021(6):590-596.
[64]ZHANG Z, WANG X G, ZHANG X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene[J]. Advanced Science,2017,5(2):1700567.
[65]祝军亮,李福金,赵令浩,等 . AgBiSe2合金化稳定 SnSe立方相结构及其热电性能的研究[J]. 聊城大学学报(自然科学版),2023,36(4):59-66.
ZHU J L, LI F J, ZHAO L H, et al. Study on the structure and thermoelectric performance of SnSe cubic phase stabilized by AgBiSe2 alloying[J]. Journal of Liaocheng University (Natural Science Edition),2023,36(4):59-66.
[66]杨建平,张方舟,陈俊. 纤维基电催化材料的结构设计及应用[J]. 中国粉体技术,2024,30(4):161-170.
YANG J P, ZHANG F Z, CHEN J. Structural design and application of fiber-based electrocatalytic materials[J]. China Powder Science and Technology,2024,30(4):161-170.
[67]刘熙俊,陈明英,马俊杰,等. 碳基单原子催化剂的合成策略及电催化应用进展[J]. 中国粉体技术,2024,30(5):35-45.
LIU X J, CHEN M Y, MA J J, et al. Advances in the synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications[J]. China Powder Science and Technology,2024,30(5):35−45.