ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第5期
<返回第5期

基于纳米WO3半导体材料的H2气体传感器的研究现状

Research status of H2 gas sensors based on nano WO3 semiconductor materials


徐红燕,李 根

济南大学 材料科学与工程学院,山东 济南 250022

引用格式:徐红燕,李根. 基于纳米WO3半导体材料的H2气体传感器的研究现状[J]. 中国粉体技术,2024,30(5):9-20.

XU H Y, LI G. Research status of H2 gas sensors based on nano WO3 semiconductor materials[J]. China Powder Science and Technology,2024,30(5):9−20.

DOI:10.13732/j.issn.1008-5548.2024.05.002

收稿日期:2024-05-14,修回日期:2024-07-09,上线日期:2024-08-29。

基金项目:国家自然科学基金面上项目,编号 :62171199。

第一作者简介:徐红燕(1976—),女,教授,博士,博士生导师,研究方向为新型半导体气敏材料及其传感器。E-mail:mse_xuhy@ujn.edu. cn。

摘要:【目的】 梳理对氢气气体响应快、灵敏度高的气体传感器研究现状,为研究高灵敏度、高选择性、易制备的H2气体传感器提供新思路。【研究现状】纳米WO3材料作为N型半导体,具有宽带隙、热稳定性高、易合成等优点,广泛应用于气体传感器领域; WO3基氢气传感器发展迅速,综述近年来国内外WO3基氢气传感器的研究成果,概括WO3材料氢气传感器制备技术、形貌特征、气敏性能的研究成果,总结上述成果的优势与现阶段的局限性; WO3纳米材料由于独特的结构特性,存在多种方式提高其性能,包含形貌控制、异质结构筑、贵金属掺杂;重点阐述 WO3纳米材料不同调整修饰技术的基本原理与研究进展。【展望】对WO3基氢气传感器的发展趋势进行展望与分析,提升性能的方式灵活多样,制备出的传感器气敏性能优异,WO3基氢气传感器在未来具有深厚的发展潜力。

关键词:气体传感器;氧化物半导体;三氧化钨


Abstract

Significance As an n-type semiconductor, WO3 is widely used in the field of gas sensors due to its wide band gap, high thermal stability, and easy synthesis. Given the importance of monitoring hydrogen concentration in ensuring the safety of industrial production and daily life, it is crucial to develop gas sensors that achieve both rapid response and high sensitivity to hydrogen.

Progress WO3 materials are known for their flexible structural properties, which can improve gas sensing performance through various approaches, such as noble metal catalysis and heterostructure construction. Doping WO3 with noble metals such as palladium and platinum and constructing heterojunctions with other semiconductors are strategies that have been proved to significantly enhance hydrogen selectivity and sensitivity. This paper reviews the current research and future prospects of hydrogen sensors, focusing on four areas: preparation methods, morphological characteristics, gas-sensing performance, and mechanisms.Sensor materials are prepared using methods such as hydrothermal synthesis, sol-gel processes, radio frequency magnetron sputtering (RFMS), and glancing angle deposition (GLAD). These materials are then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), and their gas-sensitive properties are evaluated using various instruments. Consequently, the underlying mechanisms are explained scientifically and precisely.

Conclusion and Prospects WO3 is one of the most promising materials in the field of sensing technology and has become a focal point of research in recent years. This paper reviews the preparation methods of WO3 nanomaterials and their composites, as well as the current research advancements in H2 gas detection. The morphology of metal oxides has a significant impact on gas-sensing performance. The specific surface areas and exposed crystal surfaces of WO3 vary with different morphologies, resulting in differences in contact areas and active sites for target gases. Thus, the preparation of WO3 materials with distinct morphologies has become a crucial area of research. One of the most common methods for improving gas-sensing performance is the introduction of noble metal doping. This can be achieved through chemical and electronic sensitization, which enhances sensor response. The strong coupling effect between specific metals and certain gases also improves sensor selectivity and reduces operating temperature. The dissociation of hydrogen atoms by platinum at room temperature greatly reduces the operating temperature of the sensor. Also, doping palladium into tungsten trioxide, a semiconductor, significantly enhances hydrogen detection.Studies have demonstrated that compared to pure WO3, palladium doping significantly improves hydrogen detection. Overall,the doping of noble metals and the construction of heterojunctions can reduce operating temperature, enhance sensitivity, reduce the detection limit, and shorten the recovery and response times, making these strategies highly effective compared to using onlypure phase WO3 semiconductor materials.

Keywords:gas sensor; oxide semiconductor; tungsten trioxide


参考文献(References)

[1]HAN S I, KUMAR M, DUY L T, et al. Effect of structural changes of Pd/WO3 thin films on response direction and rate in hydrogen detection[J]. Sensors and Actuators B: Chemical,2024,404:135259.

[2]YAN S H, CHEN Z R, WANG Y, et al. The ammonia modified ZIF-8@SnO2 core-shell nanosheets for improved the sensitivity and selectivity of NO2[J]. Sensors and Actuators B: Chemical,2024,409:135613.

[3]ZHANG M, LV X T, WANG T Q, et al. CuO-based gas sensor decorated by polyoxometalates electron acceptors: From constructing heterostructure to improved sensitivity and fast response for ethanol detection[J]. Sensors and Actuators B:Chemical,2024,136016.

[4]张玉娇. 三氧化钨基纳米材料的制备与NO2敏感性能研究[D]. 哈尔滨:黑龙江大学,2020.

ZHANG Y J. Preparation of tungsten trioxide-based nanomaterials and study on NO2 sensitivity [D]. Harbin: Helongjiang University,2020.

[5]李成龙. 氧化钨基纳米材料的合成、表征及气敏性能研究[D]. 长春:长春理工大学,2021.

LI C L. Synthesis、 characterization and gas sensitive properties of tungsten trioxide nanomaterials[D]. Changchun: Changchun University of Science and Technology,2021.

[6]陈政润. ZIF-8/ZIF-7@SnO2气敏材料的合成及其性能研究[D]. 济南:济南大学,2020.

CHEN Z R. Study on synthesis and properties of ZIF-8/ZIF-7@SnO2 gas sensing materials [D]. Jinan: University of Jinan,2020.

[7]JI P, HU X F, TIAN R B, et al. Atom-economical synthesis of ZnO@ZIF-8 core-shell heterostructure by dry gel conversion(DGC) method for enhanced H2 sensing selectivity[J]. Journal of Materials Chemistry C,2020,8(8):2927-2936.

[8]李继男,颜士航,李根,等. 核壳结构ZIF-8@In2O3纳米棒的制备及其对NO2选择性的提升作用[J]. 中国粉体技术,2023,29(3):101-109.

LI J N, YAN S H, LI G, et al. Synthesis of core-shell ZIF-8@In2O3 nanorods and enhancement of selectivity to NO2[J].China Powder Science and Technology,2023,29(3):101-109.

[9]朱鹏升,邓宗明,汤云扬,等. WO3基的气敏传感器的研究现状及气敏性能提升的机理分析[J]. 云南大学学报(自然科学版),2023,45(2):456-464.

ZHU P S, DENG Z M, TANG Y Y, et al. Research status of WO3-based gas sensor and mechanism analysis of gas-sensitive performance improvement[J]. Journal of Yunnan University (Natural Sciences Edition),2023,45(2):456-464.

[10]叶琴. ZIF-8/ZIF-71@α-Fe2O3材料的合成及其气敏特性研究[D]. 济南:济南大学,2022.

YE Q. Study on synthesis and gas-sensitive properties of ZIF-8/ZIF-71@α-Fe2O3 materials[D]. Jinan: University of Jinan,2022.

[11]暴力文. 基于WO3纳米结构的气体传感器研究[D]. 海口:海南大学,2022.

BAO L W. Research on gas sensor based on WO3 nanostructure[D]. Haikou: Hainan University,2022.

[12]刘彩云. ZIF-8/ZIF-71@α-MoO3材料的合成及其气敏特性研究[D]. 济南:济南大学,2021.

LIU C Y. Study on synthesis and gas-sensitive properties of ZIF-8/ZIF-71@α-MoO3 materials [D]. Jinan: University of Jinan,2021.

[13]MASETTI G,SEVERI M,SOLMI S. Modeling of carrier mobility against carrier concentration in arsenicphosphorus,and born-doped silicon[J]. Electron devices IEEE transactions on,1983,30(7):764-769.

[14]SHI Y,LI X,SUN X F, et al. Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detection[J]. Journal of alloys and compounds,2023,963:171190.

[15]LINCY H, JOBE PRABAKAR P C, JOSHUA GNANAMUTHU S, et al. Ammonia sensing performance of Ni doped-WO3 nano particles prepared by simple hydrothermal method at room temperature[J]. Materials Today: Proceedings,2023,80:958-964.

[16]SUN C X,LIU H Y,SHAO J K, et al. PdO-modified ZnSnO3 hollow rounded cubes for high-performance TEA gas sensors at low temperature[J]. Sensors and Actuators B: Chemical,2023,393:134339.

[17]JIANG B,ZHOU T T,ZHANG L,et al. Separated detection of ethanol and acetone based on SnO2-ZnO gas sensor with improved humidity tolerance[J]. Sensors and Actuators B: Chemical,2023,393:134257.

[18]ZHAO R, MA T T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal,2020,382:122893.

[19]ALAGHMANDFARD A,FARDINDOOST S, FRENCKEN A L, et al. The next generation of hydrogen gas sensors based on transition metal dichalcogenide-metal oxide semiconductor hybrid structures[J]. Ceramics International,2024,37:100532.

[20]FANG H R,SHANG E Y,WANG D, et al. A chemiresistive ppt level NO2 gas sensor based on CeO2 nanoparticles modified CuO nanosheets operated at 100 ℃[J]. Sensors and Actuators B: Chemical,2023,393:134277.

[21]LIN M H,HUANG Y,LIU Y B,et al. A durable gas sensor based on AgVO3/TiO2 nanoheterostructures to ethanol gas [J].Journal of Alloys and Compounds,2023,961:171103.

[22]CHANG X T, XU S, LIU S, et al. Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanoparticles with inorganic fullerene-like structures[J]. Sensors and Actuators B: Chemical,2021,343:130135.

[23]LI X X,FU L,CHEN F, et al. Innovations in WO3 gas sensors: Nanostructure engineering, functionalization, and future perspectives[J]. Heliyon,2024,10(6):e27740.

[24]SHRISHA, WU C M, MOTORA K G, et al. Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature[J]. Materials Science and Engineering: B,2023,289:116285.

[25]HAN Y T, LIU Y, SU C, et al. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection[J]. Sensors and Actuators B: Chemical,2020,306:127536.

[26]XIANG Q, MENG G F, ZHAO H B, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing[J]. The Journal of Physical Chemistry C,2010,114(5):2049-2055.

[27]BAI J H, WANG C C, LIU K P, et al. Enhanced gas sensing performance based on the PtCu octahedral alloy nanocrystals decorated SnO2 nanoclusters[J]. Sensors and Actuators B: Chemical,2021,330:129375.

[28]JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework[J]. Journal of the American Chemical Society,2009,131(32):11302-11303.

[29]MARIKUTSA A, YANG L L, RUMYANTSEVA M, et al. Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts[J]. Sensors and Actuators B: Chemical,2018,277:336-346.

[30]DUAN P Y, XIAO H H, WANG Z Y, et al. Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement[J]. Sensors and Actuators B: Chemical,2021,346:130557.

[31]ZHU L Y, OU L X, MAO L W, et al. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview[J]. Nano-Micro Letters,2023,15(1):89.

[32]LV J, ZHANG L, SI L, et al. Rapid and stable hydrogen detection based on Pd-modified WO nanosheets[J]. Dalton Tran sactions,2023,52(13):4200-4206.

[33]WANG X H, MENG X N, ZHU Y, et al. Design of ultrahigh-response gas sensor based on Pd-WO3/WS2 ternary nanocomposites for ultrafast hydrogen detection[J]. Sensors and Actuators B: Chemical,2024,401:134991.

[34]WANG X H, MENG X N, GAO W. Ultrahigh-response sensor based on hierarchical Pd-WO3 nanoflowers for rapid hydrogen detection[J]. Sensors and Actuators B: Chemical,2023,387:133790.

[35]HAN Z J, REN J, ZHOU J J, et al. Multilayer porous Pd-WO3 composite thin films prepared by Sol-gel process for hydrogen sensing[J]. International Journal of Hydrogen Energy,2020,45(11):7223-7233.

[36]ESFANDIAR A, IRAJIZAD A, AKHAVAN O, et al. Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors[J]. International Journal of Hydrogen Energy,2014,39(15):8169-8179.

[37]ZHOU R, LIN X P, XUE D Y, et al. Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures[J]. Sensors and Actuators B: Chemical,2018,260:900-907.

[38]MOBTAKERI S, HABASHYANI S, ÇOBAN Ö, et al. Effect of growth pressure on sulfur content of RF-magnetron sputtered WS2 films and thermal oxidation properties of them toward using Pd decorated WO3 based H2 gas sensor[J]. Sensors and Actuators B: Chemical,2023,381:133485.

[39]KOÇAK Y, GÜR E. Growth control of WS2: from 2D layer by layer to 3D vertical standing nanowalls [J]. ACS Applied Materials & Interfaces,2020,12(13):15785-15792.

[40]MOBTAKERI S, HABASHYANI S, GÜR E. Highly responsive Pd-decorated MoO3 nanowall H2 gas sensors obtained from In-situ-controlled thermal oxidation of sputtered MoS2 films[J]. ACS Applied Materials & Interfaces,2022,14(22):25741-25752.

[41]DINCER I, AYDIN M I. New paradigms in sustainable energy systems with hydrogen[J]. Energy Conversion and Management,2023,283:116950.

[42]HORPRATHUM M, SRICHAIYAPERK T, SAMRANSUKSAMER B, et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO nanorods prepared by glancing-angle dc magnetron sputtering[J]. ACS Applied Materials & Interfaces,2014,6(24):22051-22060.

[43]FAN L, XU N S, CHEN H J, et al. A millisecond response and microwatt power-consumption gas sensor: Realization based on cross-stacked individual Pt-coated WO3 nanorods[J]. Sensors and Actuators B: Chemical,2021,346:130545.

[44]NISHIJIMA Y, ENOMONOTO K, OKAZAKI S, et al. Pulsed laser deposition of Pt-WO3 of hydrogen sensors under atmospheric conditions[J]. Applied Surface Science,2020,534:147568.

[45]LI H, WU C H, LIU Y C, et al. Mesoporous WO3- TiO2 heterojunction for a hydrogen gas sensor[J]. Sensors and Actuators B: Chemical,2021,341:130035.

[46]MOON J, HEDMAN H P, KEMELL M, et al. Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate[J]. Sensors and Actuators B: Chemical,2016,222:190-197.

[47]DING W, ANSARI N, YANG Y H, et al. Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism[J]. International Journal of Hydrogen Energy,2021,46(56):28823-28837.

[48]CAI L B, ZHU S, WU G G, et al. Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure[J]. International Journal of Hydrogen Energy,2020,45(55):31327-31340.

[49]DING W J, LIU D D, LIU J J, et al. Oxygen defects in nanostructured metal-oxide gas sensors: recent advances and challenges[J]. Chinese Journal of Chemistry,2020,38(12):1832-1846.

[50]XIAO S H, LIU B, ZHOU R, et al. Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanoparticles[J]. Sensors and Actuators B: Chemical,2018,254:966-972.

[51]TIMMER B, OLTHUIS W, VAN DEN BERG A. Ammonia sensors and their applications—a review[J]. Sensors and Actuators B: Chemical,2005,107(2):666-677.

[52]LI Z, YI J X. Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films[J]. Sensors and Actuators B: Chemical,2020,317:128217.

[53]PARGOLETTI E, CAPPELLETTI G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing[J]. Nanomaterials,2020,10(8):1485.

[54]REN H Q, SUN S D, CUI J, et al. Synthesis, functional modifications, and diversified applications of molybdenum oxides micro-/nanocrystals: a review[J]. Crystal Growth & Design,2018,18(10):6326-6369.

[55]BARZEGAR M, IRAJI ZAD A, TIWARI A. On the performance of vertical MoS2 nanoflakes as a gas sensor[J]. Vacuum,2019,167:90-97.