田 昌1, 李曼曼2, 闫良国2, 赵艳侠2
1. 齐鲁工业大学(山东省科学院) 环境科学与工程学院, 山东 济南 250353;2. 济南大学 水利与环境学院, 山东 济南 250022
引用格式:
田昌, 李曼曼, 闫良国, 等. 基于回收聚合氯化铝钛混凝污泥的氮掺杂二氧化钛的制备及可见光催化性能[J]. 中国粉体 技术, 2024, 30(4): 138-149.
TIAN C, LI M M, YAN L G, et al. Preparation and visible light photocatalytic performance of nitrogen-doped titanium dioxide from recovered polyaluminum titanium chloride coagulation sludge[J]. China Powder Science and Technology, 2024, 30(4): 138−149.
DOI:10.13732/j.issn.1008-5548.2024.04.013
收稿日期: 2024-01-11, 修回日期: 2024-06-18, 上线日期: 2024-06-28。
基金项目: 国家自然科学基金项目,编号:51978311;济南市水务科技术项目,编号:JNSWKJ202108。
第一作者简介: 田昌(1984—),男,讲师,博士研究生,研究方向为水污染控制。E-mail:tianchang@qlu. edu. cn。
通信作者简介: 赵艳侠(1987—),女,教授,博士研究生,泰山学者,研究方向为水污染控制。E-mail:Stu_zhaoyx@ujn. edu. cn。
摘要:【 目的】 为了研究聚合氯化铝钛(polyaluminum titanium chloride,PATC)的混凝产生的混凝污泥的性质及其资源化利用,分析回收所得可见光催化材料的光催化性能及循环稳定性。【方法】 采用尿素为外加氮源,通过加热缩合和煅烧的 方式,从 PATC 混凝污泥中回收制备掺杂氮的二氧化钛纳米球(titanium dioxide nanospheres,TCN)材料; 研究TCN的理化 性质、 光催化性能和循环稳定性。【 结果】 TCN 中 N 的掺杂使 3 号二氧化钛纳米球(titanium dioxide nanospheres-3,TCN-3)的禁带宽度变窄(禁带宽度为3. 06 eV); 在可见光照射下,TCN 系列材料的光催化降解能力高于常规石墨相氮化 碳(graphitic carbon nitride,g-C3N4), Al掺杂的TiO2纳米材料, 能去除水溶液中90%以上的环丙沙星, 且具有良好的循环 能力。【结论】 从PATC混凝污泥中回收得到的具有吸附或光催化能力的复合材料, 可为污泥的减量化与资源化利用提 供思路。
关键词: 混凝; 聚合氯化铝钛; 污泥回收; 吸附性能; 光催化性能
Abstract
Objective This study aims to investigate the properties of coagulation sludge generated from polyaluminum titanium chloride (PATC) coagulation and its potential for resource recovery. It also analyzes the photocatalytic performance and cyclic stability of the recovered visible light photocatalyst materials.
Methods Using urea as an external nitrogen source, nitrogen-doped titanium dioxide nanospheres (TCN) were recovered and prepared from PATC coagulation sludge through heating, condensation, and calcination. Samples with different ratios of AlTiO2were prepared and named TCN-1, TCN-2, TCN-3, and TCN-4( with mass ratios of Al-TiO2 to urea being 0. 6%, 1. 2%, 2. 4%, and 3. 6%, respectively). For comparative studies, graphitic carbon nitride (g-C3N4) was also prepared. A series of characterization methods including field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction( XRD), energy dispersive spectroscopy( EDS), nitrogen adsorption and desorption( BET), and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology, elemental composition, specific surface area, crystal structure, and valence bond binding characteristics of TCN and g-C3N4. The photocatalytic performance of the recovered visible light photocatalyst TCN was evaluated by degrading ciprofloxacin under visible light irradiation. The photoelectrochemical properties, radicals, and cyclic stability of TCN were also tested.
Results and Discussion A series of characterization results from SEM, XRD, XPS, EDS, and BET indicated that the nitrogendoped titanium dioxide nanospheres recovered from PATC coagulation sludge successfully incorporated nitrogen into the prod⁃ uct. The nitrogen doping in TCN narrowed the band gap of titanium dioxide nanospheres-3(TCN-3) to 3. 06 eV. The presence of elements such as Al, C, and Fe in the product also enhanced its photocatalytic performance. Under visible light irradiation, the nitrogen-doped TCN series exhibited a stronger photocatalytic degradation capability for ciprofloxacin compared to g-C3N4 and Al-TiO2. Among them, TCN-3 showed the highest photocatalytic degradation efficiency, removing over 90% of ciprofloxacin in an aqueous solution and maintaining stable cyclic performance( after five photocatalytic cycles, the removal rate of CIP by TCN-3 decreased slightly from 96. 7% to 92. 5%). TCN photocatalytic materials were able to decompose CIP from macromol⁃ ecules into micromolecules.
Conclusion The recovery and preparation of bifunctional nanomaterials and visible light photocatalyst materials from PATC coagulation sludge provide a strategy for sludge reduction and resource utilization. The recovered products can be applied to treat water pollutants, achieving resource conservation and improving resource utilization efficiency to some extent, while also promoting ecological environment construction.
Keywords: coagulation; polyaluminum titanium chloride; sludge recovery; adsorption performance; photocatalytic performance
参考文献(References)
[1]齐俊红, 王黎明, 徐丽慧, 等. TiO2基光催化降解车内有害物质的研究进展[J]. 化工新型材料, 2023, 51(7):21- 25, 31.
QI J H, WANG L M, XU L H, et al. Research progress of TiO2-based photocatalytic degradation of harmful substances in vehicles[J]. New Chemical Materia, 2023, 51(7): 21-25, 31.
[2]周勇. 非金属离子掺杂纳米二氧化钛复合光催化材料降低水中污染物的研究进展[J]. 辽宁化工, 2023, 52(3): 405- 408,419.
ZHOU Y. Research progress of nonmetallic ion doped nano titanium dioxide composite photocatalyst for reducing pollutants in wate[r J]. Liaoning Chemical Industry, 2023, 52(3): 405-408, 419.
[3]GAN Y H, LI J B, ZHANG L, et al. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives[J]. Chemical Engineering Journal, 2021, 406: 126837.
[4]ZHAO Y X, LI X Y. Polymerized titanium salts for municipal wastewater preliminary treatment followed by further purification via crossflow filtration for water reuse[J]. Separation and Purification Technology, 2019, 211: 207-217.
[5]ZHAO Y X, CHI Y T, TIAN C, et al. Recycling of titanium-coagulated algae-rich sludge for enhanced photocatalytic oxidation of phenolic contaminants through oxygen vacancy[J]. Water Research, 2020, 177: 115789.
[6]高宝玉, 黄鑫, 姚广平,等. 钛盐混凝剂的研究进展[J]. 山东大学学报(工学版), 2020, 50(1): 109-114.
GAO B Y, HUANG X, YAO G P, et al. Review of developments in titanium-based coagulants[J]. Journal of Shandong University(Engineering Science), 2020, 50(1):109-114.
[7]WANG M Y, ZHAO Y Z, WANG X H. Preparation and assessment of granular substrate from wastewater post-coagulation sludge towards maximum phosphate adsorption and erosion wear resistance[J]. Resources, Conservation & Recycling, 2022,184: 106429.
[8]LIU B B, GAO Y, YUE Q Y, et al. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant(PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation[J]. Water Research,2023, 232: 119690.
[9]CHEN Z S, ZHANG S, LIU Y, et al. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants[J]. Science of the Total Environment, 2020, 731: 139054.
[10]GUO N, ZENG Y, LI H, et al. Novel mesoporous TiO2@g-C3N4 hollow core@shell heterojunction with enhanced photocata⁃ lytic activity for water treatment and H2 production under simulated sunlight[J]. Journal of Hazardous Materials, 2018, 353: 80-88.
[11]HOSSAIN S M, TIJING L, SUZUKI N, et al. Visible light activation of photocatalysts formed from the heterojunction of sludge-generated TiO2 and g-CN towards NO remova[l J]. Journal of Hazardous Materials, 2022, 422: 126919.
[12]LIU H, YU D Q, SUN T B, et al. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2019, 473: 855-863.
[13]BALU S, CHEN Y L, YANG T C K, et al. Effect of ultrasound-induced hydroxylation and exfoliation on P90-TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing[J]. Ceramics International, 2020, 46(11): 18002-18018.
[14]NI J X, WANG W, LIU D M, et al. Oxygen vacancy-mediated sandwich-structural TiO2-x/ultrathin g-C3N4/TiO2-x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics[J]. Journal of Hazardous Materials, 2021, 408: 124432.
[15]DONG S, CHEN S H, HE F Y, et al. Construction of a novel N-doped oxygen vacancy-rich TiO2 N-TiO2-X/g-C3N4 Sscheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine[J]. Journal of Alloys and Compounds, 2022, 908: 164586.
[16]GAN W, GYO J, FU X C, et al. Dual-defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: Performance, degradation pathway, and mechanism[J]. Separation and Purification Technology, 2023,306:122578.
[17]GUO B, ZHAO C C, ZHOU L J, et al. Constructing a novel multi-hierarchical TiO2/g-C3N4/Ag-AgBr photocatalyst with dual Z-scheme heterojunction utilizing Ag as the charge transfer mediator[J]. Journal of Alloys and Compounds, 2022, 900: 163514.
[18]VILLARREAL-MORALES R, HINOJOSA-REYES L, ZANELLA R, et al. Enhanced performance of TiO2 doped with aluminum for the photocatalytic degradation of a mixture of plasticizers[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107100.
[19]SHI Q Q, ZHANG X Y, LIU X Y, et al. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible ligh[J]. Carbon, 2022, 196: 401-409.
[20]VIJAYAN M,MANIKANDAN V,RAJKUMAR C, et al. Constructing Z-scheme g-C3N4/TiO2 heterostructure for promoting degradation of the hazardous dye pollutants[J]. Chemosphere, 2023, 311: 136928.