ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第4期
<返回第4期

颗粒增强铝基复合材料的制备与界面行为

Preparation and interfacial behavior of particle-reinforced aluminum matrix composites


唐彬彬1, 冯思雨1, 段君元2, 金培鹏1

1. 青海大学 机械工程学院, 青海省新型轻合金重点实验室, 青海 西宁 810016;2. 武汉工程大学 材料科学与工程学院, 湖北省等离子体化学与新材料重点实验室, 武汉 湖北 430025


引用格式:

唐彬彬, 冯思雨, 段君元, 等. 颗粒增强铝基复合材料的制备与界面行为[J]. 中国粉体技术, 2024, 30(4): 1-14. 

TANG B B, FENG S Y,DUAN J Y, et al. Preparation and interfacial behavior of particle-reinforced aluminum matrix compos⁃ ites[J]. China Powder Science and Technology, 2024, 30(4): 1−14.

DOI:10.13732/j.issn.1008-5548.2024.04.001

收稿日期: 2024-03-24, 修回日期: 2024-05-16, 上线日期: 2024-06-27。

基金项目: 国家自然科学基金项目,编号:51661028;青海省科技厅基础研究计划项目,编号:2024-ZJ-765。

第一作者简介: 唐彬彬(1986—),男,博士,硕士生导师,研究方向为轻合金及其复合材料。E-mail:tangbb@hotmail. com。

通信作者简介: 段君元(1983—), 男, 博士, 硕士生导师, 研究方向为光电材料可控制备、 器件构筑与光电能源转化与存储。E-mail:junyduan@wit. edu. cn。

摘要:【目的】 探讨颗粒增强铝基复合材料(particle-reinforced aluminum matrix composites, PAMCs)性能提升、 应用前景 等。【研究现状】概述 PAMCs复合材料的主要制备方法,主要包括搅拌铸造法、 原位合成法、 粉末冶金法、 喷射成形法、 挤压铸造法、 直接氧化法、 高温水热合成法等; 从结合方式、 结合强度、 界面表征等方面对PAMCs界面进行介绍; 从强 化机制和增强体因素等方面对界面力学性能进行概括。【结论与展望】复合材料的制备方法对增强体在基体中的分布、 界面结合和性能产生显著影响,选择制备方法时应综合考虑所需的材料性能、 生产成本及工艺可行性; 界面结合对PAMCs的整体性能至关重要,良好的界面结合能提高材料的强度和韧性;强化机制决定材料的特性,通过成分设计、 微 观结构调控以及制备工艺优化等手段,实现多种强化机制的协同作用,可最大限度地提升材料的性能。未来的研究应致 力于开发低成本、绿色环保等新型高效的制备技术,优化PAMCs的微观结构和性能; 通过设计界面结构并调控界面反应 等,可以进一步提升PAMCs的性能; 控制界面反应也是PAMCs关键发展方向之一。

关键词: 铝基复合材料; 制备工艺; 颗粒增强; 界面行为

Abstract:

Significance Particle-reinforced aluminum matrix composites (PAMCs) have the advantages of low density and high specific strength. In the field of engineering and technology, PAMCs have attracted significant attention due to their superior mechanical  properties and dimensional stability. However, challenges with particle dispersion and interfacial bonding limit further improvement in their properties. To solve these problems in the process of PAMC preparation and bonding, it is necessary to seek more suitable composite preparation processes and interfacial bonding methods. Therefore, this paper focuses on the preparation methods and interfacial bonding of PAMCs.

Progress At present, the research on PAMCs mainly includes preparation technologies and interfacial bonding. Different preparation methods exhibit different characteristics and applicability, but no single preparation method has been widely recognized among researchers. The preparation methods and processes of PAMCs are still being explored. The selection of suitable preparation methods and processes must consider the characteristics, requirements, and actual conditions of the matrix and reinforcement materials. Interfacial bonding is an important theoretical basis for developing new materials, devices, and technologies. Studies have shown that the strengthening mechanism of PAMCs largely depends on the interfacial bonding strength between the matrix and the reinforcement. For PAMCs, there are still many problems related to interface structure that need to be solved. The paper offered an overview of the main methods used to fabricate PAMCs, including powder metallurgy, stir casting, in-situ synthesis, spray deposition, extrusion casting, direct oxidation, high-temperature hydrothermal synthesis. It also highlighted the distinctive features and potential applications of these methods. Interfaces of PAMCs were introduced from the aspects of binding modes, binding strength, and interface characterization. It further explored the vital role of interfacial bonding strength in composite performance and explained the three primary interfacial mechanisms: mechanical, physical, and chemical bonding. Additionally, recent research progress in PAMCs was summarized, with a focus on mechanical strength, corrosion resistance, and dimensional stability.

Conclusions and Prospects The preparation methods of composite materials have a significant impact on the distribution of reinforcements in the matrix, interfacial bonding, and material performance. The choice of preparation methods should comprehensively consider the required material properties, production costs, and technological feasibility. Interfacial bonding is crucial to the overall performance of PAMCs, and good interfacial bonding can improve the strength and toughness of the material. Over the past few decades, significant progress has been made in composite material preparation technologies, mainly including powder metallurgy, stir casting, spray deposition, and in-situ synthesis. Among these, spray deposition technology produces com⁃ posites with unique advantages, such as uniform particle distribution and fine grains, and shows great potential for future applications and development. However, to prepare PAMCs with good comprehensive properties and stability, improving the preparation process to achieve high efficiency, low cost, stability, and reliability, as well as enhancing the compatibility between the matrix material and the reinforcement phase and the dispersion of the phase, remains key to solving the preparation challenges. Some breakthroughs have also been made in the study of interfacial bonding. The degree of interfacial reaction hinders the further development of the comprehensive mechanical properties of PAMCs. Controlling the interfacial reaction is one of the main directions for future research. Furthermore, the significant mismatch between the plasticity and strength of PAMCs poses a major challenge to their development. Further progress in PAMCs lies in the meticulous regulation of interfaces and optimization of preparation techniques to fabricate materials with both high strength and satisfactory plasticity.Keywords: aluminum matrix composites; preparation process; particle-reinforced; interfacial behavior

参考文献(References)(References)

[1]SALURA E, ASLAN A, KUNTOGLU M, et al. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route[J]. Advanced Powder Technology, 2021, 32: 3826-3844.

[2]ZENG M, LIN K X, ZHOU Z K, et al. Effects of 3D graphene networks on the microstructure and physical properties of SiC/Al composites[J]. Ceramics International, 2023, 49(5): 8140-8147.

[3]李赞, 张荻. 金属基复合材料的内源性效应[J]. 中国材料进展, 2023, 42(8): 605-613. LI Z, ZHANG D. The self-stimulation effect for high-performance metal matrix composites[J]. Materials China, 2023, 42(8):605-613.

[4]ZHANG J F, ANDRÄ H, ZHANG X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites[ J]. Composite Structures, 2019, 226: 111281.

[5]DU A, LATTANZI L, JARFORS A E W, et al. On the efficient particle dispersion and transfer in the fabrication of SiCparticle-reinforced aluminum matrix composite[J]. Crystals, 2023, 13(12): 1621.

[6]KARABULUT Y, ÜNAL R. Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites:a review[J]. Journal of Materials Science, 2022, 57(41): 19212-19242.

[7]PATEL M, CHAUDHARY B, MURUGESAN J, et al. Enhancement of tensile and fatigue properties of hybrid aluminum matrix composite via multipass friction stir processing[J]. Journal of Materials Research and Technology, 2022, 21: 4811- 4823.

[8]IMRAN M, KHAN A R A. Characterization of Al-7075 metal matrix composites: a review[J]. Journal of Materials Research and Technology, 2019, 8(3): 3347-3356.

[9]ZHU J W, JIANG W M, LI G Y, et al. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting[J]. Journal of Materials Processing Technology, 2020, 283:116699.

[10]陈诚诚, 张文达, 卫振华, 等. SiC-Al3Ti协同增强7075铝基复合材料搅拌工艺优化研究[J]. 铸造技术, 2019, 40(4):360-364. 

CHEN C C, ZHANG W D, WEI Z H, et al. Optimization study on stirring process for SiC-Al3Ti synergistically enhanced 7075 aluminum matrix composites[ J]. Foundry Technology, 2019, 40(4): 360-364.

[11]RAHMAN M H, HABIBUR M D, MAMUN AL RASHED H M. Characterization of silicon carbide reinforced aluminum matrix composites[J]. Procedia Engineering, 2014, 90: 103-109.

[12]SUN T T, CHEN J, WU Y, et al. Achieving excellent strength of the LPBF additively manufactured Al-Cu-Mg composite via in-situ mixing TiB2 and solution treatment[ J]. Materials Science and Engineering: A, 2022, 850: 143531.

[13]李子叶, 王依科, 杨子睿, 等. 大功率激光重熔对ZrB2p/6061Al复合材料的组织影响规律[ J]. 焊接技术, 2020,49(12): 15-20.LI Z Y, WANG Y K, YANG Z R, et al. Effect of high-power laser remelting on the microstructure of ZrB2p/6061 Al composites[J]. Welding Technology, 2020, 49(12): 15-20.

[14]赵玉厚, 严文, 周敬恩. 原位A13Ti粒子增强ZL101铝基复合材料[J]. 中国有色金属学报,2000, 10: 214-217. ZHAO Y H, YAN W, ZHOU J N. In-situ Al3Ti particles reinforced ZL101 alloy composites[J]. The Chinese Journal of Nonferrous Metals, 2000, 10: 214-217.

[15]GOUDARZII M M, AKHLAGHI F. Fabrication of Al/SiC nanocomposite powders via in situ powder metallurgy method[J]. Advanced Materials Research, 2011, 295-297: 1347-1352.

[16]BRAVILINJIJU K, SELVAKUMAR G, PRAKASH S R. Study on preparation of Al-SiC metal matrix composites using powder metallurgy technique and its mechanical properties[J]. Materials Today: Proceedings, 2020, 27: 1843-1847.

[17]JIA C, ZHANG P, XU W, et al. Neutron shielding and mechanical properties pf short carbon fiber reinforced aluminum 10第 4 期 冯思雨,等:颗粒增强铝基复合材料的制备与界面行为6061-boron carbide hybrid composite[J]. Ceramics International, 2021, 47(7): 10193-10196.

[18]CHEN C Y, XIE X L, XIE Y C, et al. Cold spraying of thermally softened Ni-coated FeSiAl composite powder: microstructure characterization, tribological performance and magnetic property[J]. Materials and Design, 2018, 160: 270-283.

[19]HUA A D, SU Y S, CAI Y P, et al. Fabrication, microstructure characterization and mechanical properties of B4C microparticles and SiC nanowires hybrid reinforced aluminum matrix composites[J]. Materials Characterization, 2022, 193:112243.

[20]SHARMA M M, AMATEAU M F, EDEN T J. Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites[J]. Materials Science and Engineering: A, 2006, 424(1/2): 87-96.

[21]唐彬彬. 喷射沉积17vol. %SiCp/7055Al复合材料变形行为研究[D]. 重庆: 西南大学,2021.TANG B B. Deformation behaviors of spray-deposition 17 vol. % SiCp/7055Al composites[D]. Chongqing: Southwest University,2021.

[22]韩震, 龚留奎, 章国伟, 等. 喷射沉积超高强铝基复合材料的组织及性能研究[J]. 热加工工艺, 2024, 53(4): 111- 114. HAN Z, GONG L K, ZHANG G W, et al. Study on microstructure and properties of ultra-high strong aluminum-based composites by spray forming[J]. Hot Working Technology, 2024, 53(4): 111-114.

[23]TANG B B, WANG H T, JIN P P, et al. Constitutive flow behavior and microstructural evolution of 17 vol% SiCp/7055Al composite during compression at elevated temperature[J]. Journal of Materials Research and Technology, 2020, 9(3): 6386-6396.

[24]李微, 陈荐, 何建军, 等. 颗粒粒径对喷射沉积制备SiC颗粒增强铝硅合金复合材料显微组织及拉伸性能的影响[J].机械工程材料, 2013, 37(4): 38-42. LI W, CHEN J, HE J J, et al. Effects of particle diameter on microstructure and tensile properties of SiC particle reinforced Al-Si alloy composites by spray deposition[ J]. Materials for Mechanical Engineering, 2013, 37(4): 38-42.

[25]李微, 安帅朋, 杨蕾, 等 . SiC 颗粒尺寸对喷射沉积铝硅复合材料高温疲劳性能的影响[J]. 材料热处理学报, 2021, 42(1): 34-43. LI W, AN S P, YANG L, et al. Effect of SiC particle size on high temperature fatigue properties of spray-deposited Al-Si composites[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 34-43.

[26]CHEN M Q, BAI Y L, ZHANG Z F, et al. The preparation of high-volume fraction SiC/Al composites with high thermal conductivity by vacuum pressure infiltration[J]. Crystals, 2021, 11(5): 515.

[27]CHEN M Q, BAI Y L, ZHANG Z F. Research progress on preparation of SiC/Al for electronic packaging by liquid infiltration[J]. Materials Science Forum, 2021, 1035: 906-917.

[28]WANG C Z, YANG L K, GUO R F, et al. Preparation of laminated Al/B4C composites with gradient structures and properties through centrifugal freezing and pressure infiltration[J]. Ceramics International, 2023, 49(11): 17719-17728.

[29]SUN K, ZHU P, ZHANG P, et al. Dispersion and preparation of nano-AlN/AA6061 composites by pressure infiltration method[J]. Nanomaterials, 2022, 12(13): 2258.

[30]ZENG Y, WANG J, LIU X, et al. Laser additive manufacturing of ceramic reinforced titanium matrix composites: a review of microstructure, properties, auxiliary processes, and simulations[J]. Composites Part A, 2024, 177: 107941.

[31]刘阳, 徐靖, 宁挺, 等 . 激光粉末床熔融 Inconel718 合金工艺优化与组织演变[J]. 中国粉体技术, 2024, 30(1): 23-35. LIU Y, XU J, NING T, et al. Process optimization and microstructure evolution of inconel718 alloy by laser powder bed fusion[J]. China Powder Science and Technology, 2024, 30(1): 23-35.

[32]LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1): 1355.

[33]WANG Y M, VOISIN T, MCKEOWN J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2018, 17(1): 63-71.

[34]GU D D, HAGEDOR Y C, MEINERS W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60: 3849-3860.

[35]韩臻, 陈元涛, 张炜, 等. Ag-Cu-MOC复合材料的制备及其对碘蒸气的吸附性能[J]. 中国粉体技术, 2020, 26(4):11中 国 粉 体 技 术 第 30 卷 65-73. HAN Z, CHEN Y T, ZHANG W, et al. Preparation of Ag-Cu-MOC composites and its adsorption properties for iodine vapo[r J]. China Powder Science and Technology, 2020, 26(4): 65-73.

[36]BA S H, JOO M R, SHIN S E, et al. A new strategy for developing interfacial bonding using non-metallic atoms in carbon nanotube-reinforced aluminum composites[J]. Materials Science and Engineering: A, 2024, 893: 146128.

[37]SHIN S E, CHOI H J, HWANG J Y, et al. Strengthening behavior of carbon/metal nanocomposites[J]. Scientific Reports,2015, 5: 16114.[38]XIAO P, ZHAO Q, GAO Y, et al. Interface characteristics and tensile fracture behavior of CoCrFeNi/6061Al matrix composites fabricated via spark plasma sintering and heat treatmen[t J]. Materials Characterization, 2024, 208: 113685.

[39]MA Y, SONG H, NIU X, et al. Effect of fiber roughness on interfacial friction of fiber reinforced ceramic matrix composites[J]. Ceramics International, 2024, 50(4): 7086-7100.

[40]YANG X, LIANG Z, WANG L W, et al. Interface structure and tensile behavior of high entropy alloy particles reinforced Al matrix composites by spark plasma sintering[J]. Materials Science and Engineering: A, 2022, 860: 144273.

[41]BRASZCZYŃSKA-MALIK K N. Types of component interfaces in metal matrix composites on the example of magnesium matrix composites[J]. Materials, 2021, 14(18): 5182.

[42]LEE T, LEE J, LEE D, et al. Effects of particle size and surface modification of SiC on the wear behavior of high-volume fraction Al/SiCp composites[J]. Journal of Alloys and Compounds, 2020, 831: 154647.

[43]URENA A, MARTINEZ E E, RODRIGO P, et al. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites[J]. Composites Science and Technology, 2004, 64(12): 1843-1854.

[44]DONG C, RUI C U I, WANG R, et al. Microstructures and mechanical properties of Al2519 matrix composites reinforced with Ti-coated SiC particles[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 863-871.

[45]MA Y, CHEN H, ZHANG M X, et al. Break through the strength-ductility trade-off dilemma in aluminum matrix composites via precipitation-assisted interface tailoring[J]. Acta Materialia, 2023, 242: 118470.

[46]ZHANG X, HOU X D, PAN D, et al. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites[J]. Materials Science and Engineering: A, 2020, 793: 139783.

[47]ROMERO J C, WANG L, ARSEAULT R J. Interfacial structure of a SiC/Al composite[J]. Materials Science and Engineering: A, 1996, 212(1): 1-5.

[48]XUE C, YU J K. Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction[J]. Mater Design, 2014, 53: 74-78.

[49]METCALFE A G. Interfaces in metal matrix composites[M]. New York: Academic Press, 1974: 2-28.

[50]崔岩, 耿林, 姚忠凯 . 轻微界面反应对 SiCp/6061Al 复合材料弹性模量的影响[J]. 复合材料学报, 1998,15(1): 75-78.CUI Y, GENG L, YAO Z K. Effect of a slight interfacial reaction on the Young’s modulus of SiC/6061Al composite[J]. 1998, 15(1): 75-78.

[51]WANG Z J, LIU S,QIU Z X, et al. First-principles calculations on the interface of the Al/TiC aluminum matrix composites[J]. Applied Surface Science, 2020, 505: 144502.[52]LIU Z Y, WANG L H, ZAN Y N, et al. Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding[J]. Composites: Part B, 2020, 199: 108268.

[53]DAI G, LIU Y M, CHEN K, et al. Effect of cumulative deformation and interlayer mechanical properties on bonding strength of corrugated interface steel/aluminum composite plate[J]. Journal of Manufacturing Processes, 2023, 103: 78-89.

[54]SMITH S, PETER A O, LINDA T, Phase stability and microstructural properties of high entropy alloy reinforced aluminium matrix composites consolidated via spark plasma sintering[J]. Heliyon, 2024, 10: e24498.

[55]ZHANG X, LI X, WANG J, et al. Stimulating adequate strengthening effect through alloying regulation for powder metallurgy CNTs reinforced aluminum matrix composites[J]. Journal of Materials Research and Technology, 2024, 28: 1725- 1733.

[56]LIU Y, ZHENG G. The design of aluminum-matrix composites reinforced with AlCoCrFeNi high-entropy alloy nanoparticles by first-principles studies on the properties of interfaces[J]. Nanomaterials, 2022, 12(13): 2157.

[57]DUDIY S V. Wetting of TiC and TiN by metals[J]. Physical Review B, 2004, 69(12): 125421.

[58]MATSUNAKA D. Electronic states and adhesion properties at metal/MgO incoherent interfaces: first-principles calculations[J]. Physical Review B, 2008, 77(16): 344-354.

[59]XU Z Y, LI C J, PENG Y Z, et al. Effects of solid-state interfacial reaction on the mechanical properties of carbon nanotubes reinforced aluminum matrix composites with heterogeneous structure[J]. Materials Characterization, 2022, 194: 112447.

[60]马宗义, 肖伯律, 张峻凡, 等. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457- 466.MA Z Y, XIAO B L, ZHANG J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand[J]. Acta Metallurgica Sinic, 2023, 59(4): 457-466.

[61]马国楠, 朱士泽, 王东, 等. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12):1655-1664.MA G N, ZHU S Z, WANG D, et al. Aging behaviors and mechanical properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metallurgica Sinic, 2023, 59(12): 1655-1664.

[62]TOOZANDEHJANI M, OSTOVAN F, JAMALUDIN K R, et al. Process-microstructure-properties relationship in AlCNTs-Al2O3nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2339-2354.

[63]KAFTELEN H, ÜNLÜN N, GÖLLER G, et al. Comparative processing-structure-property studies of Al-Cu matrix composites reinforced with TiC particulates[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 812-824.[64]SINGH G, GOYAL S. Microstructure and mechanical behavior of AA6082 T6/SiC/B4C based aluminum hybrid composites[J]. Particulate Science and Technology, 2018, 36(2): 154-161.

[65]LU Y H, YU X F, SUO Z Y, et al. Effect of nano-SiC particles on grain orientation and hardness of friction stir processed aluminum matrix composite[ J]. Materials Letters, 2024, 362: 36219.

[66]KUMAR J, SINGH D, KALSI N S, et al. Comparative study on the mechanical, tribological, morphological and structural properties of vortex casting processed, Al-SiC-Cr hybrid metal matrix composites for high strength wear-resistant applications: fabrication and characterizations[J]. Journal of Materials Research and Technology, 2020, 9(6): 13607-13615.

[67]杨海瑞, 孙跃军, 刘嗣哲, 等. 固溶处理对TiB2/6061复合材料硬度及耐磨性的影响[J]. 金属热处理, 2020, 45(6): 46-50.YANG H R, SUN Y J, LIU S Z, et al. Influence of solution treatment on hardness and wear resistance of TiB2/6061 composites[J]. Heat Treatment of Metals, 2020, 45(6): 46-50.[68]LI J, LI F, WU S, et al. Variation of microstructure and mechanical properties of hybrid particulates reinforced Al-alloy matrix composites with ultrasonic treatmen[t J]. Journal of Alloys and Compounds, 2019, 789: 630-638.

[69]SHARIFI E M, KARIMZADEH F, ENAYATI M H. Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites[J]. Materials and Design, 2011, 32(6): 3263-3271.