ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第3期
<返回第3期

球形粉体制备技术研究进展

Research progress on preparation technology of spherical powder


彭 琳1,谭 琦2,3,刘 磊2,3,钱晨光1,李春全1,孙志明1,袁 方1

(1. 中国矿业大学(北京) 化学与环境工程学院,北京 100083;2. 中国地质科学院 郑州矿产综合利用研究所,河南 郑州 450006;3. 国家非金属矿产资源综合利用工程技术研究中心,河南 郑州 450006)


引用格式:

彭琳,谭琦,刘磊,等. 球形粉体制备技术研究进展[J]. 中国粉体技术,2024,30(3):12-27. 

PENG L, TAN Q, LIU L, et al.Research progress on preparation technology of spherical powder[J]. China Powder Science and Technology,2024,30(3):12−27.

DOI:10.13732/j.issn.1008-5548.2024.03.002

收稿日期:2023-10-16,修回日期:2024-03-12,上线日期:2024-04-26。

基金项目:国家自然科学基金项目,编号:52304310;中国地质调查局地质调查项目,编号 :DD20221698。

第一作者简介:彭琳(1999—),女,硕士生,研究方向为非金属矿物材料。E-mail:penglin202210@163. com。 

通信作者简介:袁方(1994—),男,讲师,博士,研究方向为非金属矿物材料、资源深加工与综合利用。E-mail:fangyuan@cumtb. edu. cn; 孙志明(1986—),男,教授,博士,中科协托举工程人才,研究方向为非金属矿物材料、资源深加工与综合利用。E-mail: zhimingsun@cumtb. edu. cn.


摘要:【目的】 球形粉体由于具有更好的流动性和均匀性被广泛应用于增强材料、涂料、陶瓷、3D打印等领域。为了满 足不同行业对粉体材料的表面特性和物理性能要求,提升产品性能,降低工艺损失,促进绿色制造,对球形粉体制备技术 的研究现状进行总结和思考,为推动粉体工业的创新与发展提供参考。【研究现状】综述球形粉体常见制备技术,包括传 统物理法(机械整形法和喷雾干燥法)、化学法(气相化学反应法、沉淀法、水热合成法、溶胶凝胶法及微乳液法)和高温 熔融法(等离子体球化法、雾化法和气体燃烧火焰成球法),总结上述方法的优势及目前的局限性,重点阐述不同球形粉 体材料制备技术的基本原理与应用领域的研究进展。【展望】对球形粉体制备技术的发展趋势进行分析与展望,认为高温 熔融法是最具实现大规模工业化生产潜力的球形粉体制备技术,提出高纯超细、窄分布、粒径可控、高球化率、高效率 工业智能化绿色生产是我国未来球形粉体制备技术的发展趋势。

关键词:球形粉体;球形化;高温熔融;等离子体

Abstract

Significance Powder serves as significant industrial raw materials, with increasingly high performance requirements driven by its diverse applications. In addition to requiring very low impurity content and fine particle size with strict particle size distribution, powders also need to have a certain particle morphology. Spherical powder offers distinct advantages over conventional powders, mainly evident in the following aspects: 1) Surface Morphology and Defects: Spherical powder exhibits uniform surface morphology and fewer defects, reducing the loss of mold in the production process to the finished product ; 2) Particle Size Distribution: Spherical powders have a narrower and more uniform particle size distribution compared to irregular powders, enhancing product consistency and performance; 3) Improved Mobility: The spherical shape of the powder promotes better flowability, increasing powder filling capacity, particularly beneficial in powder metallurgy applications, enhancing part density; 4) Uniform Shrinkage During Sintering: Spherical powder shrinks more uniformly during sintering, facilitating grain size regulation. Given its excellent performance in surface morphology, particle size distribution and flow properties, spherical powders find extensive use across various industries. This paper presents a summary of the current status of spherical powder preparation technology based on the research progress of common spherical powder preparation technology. The different preparation principles are categorized into three types: traditional physical method, chemical method, and high temperature melting method. It analyses the development of existing technology and provides a reference for future development of new technologies and theoretical research on spherical powder preparation.

Progress The traditional physical method for preparing spherical powder, while utilizing widely available and inexpensive raw materials, presents challenges for industrialization due to high equipment requirements. Furthermore, ensuring consistent particle characteristics post-production remains problematic, rendering it suitable only for applications with lower product quality requirements. In contrast, chemical methods offer advantages in achieving uniform particle size and high purity levels, albeit with significant demand for chemical reagents such as surfactants and precipitants. Challenges arise in effectively removing organic impurities, leading to agglomeration issues and hindering industrial scalability. The high-temperature melting method, widely employed for high melting point powders like quartz and various metal powders, yields spherical powders with high sphericity, low impurity content, and narrow particle size distributions. This method's adaptability to varying melting points allows for environmentally friendly production processes with minimal environmental impact. The resultant product particles exhibit enhanced vibration density, sphericity, and mobility, making them suitable for high-end applications. Consequently, the hightemperature melting method holds significant promise for large-scale industrial production of high-performance spherical powder materials.

Conclusions and Prospects As an integral component of modern industry and technology, powder spheroidizing technology plays a crucial role in enhancing the surface and physical properties of powders. This, in turn, improves the precision and efficiency of manufacturing processes, optimizes material properties, meets multifunctionality requirements, reduces energy consumption, and fosters green manufacturing practices. Currently, powder spheroidizing technology has permeated various sectors including pharmaceuticals, food processing, chemicals, environmental protection, materials science, metallurgy, and 3D printing.

Keywords:spherical powder; spheroidization; high-temperature melting; plasma


参考文献(References)

[1]李俊,蒋述兴. 球形硅微粉的制备现状[J]. 有机硅材料,2012,26(6):427-431. 

LI J, JIANG S X. Current status of preparation of spherical silicon micro-powders[J]. Silicone Material,2012, 26(6): 427-431.

[2]陆亮亮. 3D打印用球形钛粉气雾化制备技术及机理研究[D]. 北京 北京科技大学,2019. 

LU L L. Study on the technology and mechanism of spherical titanium powder atomization for 3D printing[D]. Beijing University of Science and Technology,2019. [3]周武平,张莹莹,王学兵,等. 球形钨粉的制备及应用[J]. 稀有金属材料与工程,2019,48(8):2594-2601. 

ZHOU W P, ZHANG Y Y, WANG X B, et al. Preparation and application of spherical tungsten powder[J]. Journal of Rare Metal Materials and Engineering,2019,48(8):2594-2601.

[4]WANG C C, JIA C C, GAO P, et al. Spherical modification of tungsten powder by particle composite system[J]. Rare Metals,2022,41(6):1972-1976.

[5]滕德亮,李朋,袁娜,等. 天然石墨的球形化工艺参数优化[J]. 中国粉体技术,2021,27(4):70-76. 

TENG D L, LI P, YUAN N, et al. Optimization of process parameters for sphericalization of natural graphite[J]. China Powder Science and Technology,2021,27(4):70-76.

[6]王靖, 高惠民, 焦玄, 等. 吉林某隐晶质石墨球形化整形及提纯试验研究[J]. 硅酸盐通报, 2018, 37(10):3244- 3247,3255. 

WANG J, GAO H M, JIAO X, et al. Experimental study on shaping and purification of cryptocrystalline graphite spheroidization in Jilin [J]. Bulletin of the Chinese Ceramic Society,2018,37(10):3244-3247,3255.

[7]刘建国,张军,张红英. 国内某石墨精矿球形化试验研究[J]. 矿产保护与利用,2019,39(6):28-31. 

LIU J G, ZHANG J, ZHANG H Y. Experimental study on spheroidization of domestic graphite concentrate[J]. Conservation and Utilization of Mineral Resources,2019,39(6):28-31.

[8]王昕,白显明,王文义,等. 水泥颗粒形貌对其性能影响的研究(下)[J]. 中国水泥,2003(4):33-36. 

WANG X, BAI X M, WANG W Y, et al. Study on the influence of cement particle morphology on its performance (Part II)[J]. China Cement,2003(4):33-36.

[9]WANG Y M, FORSSBERG E. Production of carbonate and silica nano-particles in stirred bead milling[J]. International Journal of Mineral Processing,2006,81(1):1-14.

[10]KOBAYASHI N, INDEN Y, EEDO M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery[J]. Journal of Power Sources,2016,326:235-241.

[11]王江,刘英,李小东,等. 喷雾干燥法制备球形RDX的工艺优化[J]. 火炸药学报,2015,38(1):16-21. 

WANG J, LIU Y, LI X D, et al. Optimization of the process for spherical RDX preparation by spray drying [J]. Chinese Journal of Explosives & Propellants,2015,38(1):16-21.

[12]张鑫,刘梦雅,徐聪,等. 溶剂体系温度对细化HMX性能的影响[J]. 火工品,2020(6):38-41. 

ZHANG X, LIU M Y, XU C, et al. Effect of solvent system temperature on the performance of refined HMX[J]. Fireworks,2020(6):38-41.

[13]孙兴新,任冰,王娟梅,等. 喷雾干燥制备球状LiFePO4/C正极材料[J]. 硅酸盐学报,2015,43(7):845-851. 

SUN X X, REN B, WANG J M, et al. Preparation of spherical LiFePO4/C cathode materials by spray drying[J]. Journal of the Chinese Ceramic Society,2015,43(7):845-851.

[14]张蒙. 溶胶凝胶法制备α-Al2O3粉体的研究[D]. 重庆:重庆理工大学,2021. 

ZHANG M. Preparation of α-Al2O3 powder by sol-gel method [D]. Chongqing: Chongqing University of Technology,2021.

[15]文彬. 化学沉淀法制备超细球形二氧化硅的工艺研究[D]. 吉林:长春工业大学,2013. 

WEN B. Process study on the preparation of ultrafine spherical silica by chemical precipitation[D]. Jilin: Changchun University of Technology,2013.

[16]王亚玲. 均匀沉淀法制备可控粒径Y2O3微球形颗粒及性能研究[D]. 沈阳:东北大学,2017. 

WANG Y L. Preparation of Y2O3 microspherical particles with controllable particle size by homogeneous precipitation method and study of properties [D]. Shenyang: Northeastern University,2017.

[17]文钰. 气相法制备超细颗粒的热过程研究[D]. 北京:北京科技大学,2018. 

WEN Y. Research on thermal process of ultrafine particles prepared by vapor phase method [D]. Beijing: University of Science and Technology Beijing,2018.

[18]PARK H K, PARK K Y. Vapor-phase synthesis of uniform silica spheres through two-stage hydrolysis of SiCl4 [J]. Materials Research Bulletin,2008,43(11):2833-2839.

[19]战可涛, 线全刚, 郑丰, 等. 激光法制备高纯纳米SiC粉体及其产率[J]. 北京化工大学学报(自然科学版), 2002(5):75-78. 

ZHAN K T, XIAN Q G, ZHENG F, et al. Preparation of high-purity SiC nanopowder by laser method and its yield[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2002(5):75-78.

[20]汪效祖,陈洪龄,徐南平. 水热法制备纳米二氧化硅[C]//中国材料研究学会,江苏省科学技术协会,2003:94-96. 

WANG X Z, CHEN H L, XU N P. Preparation of nanosilica by hydrothermal method[C]//Chinese Society for Materials Research, Jiangsu Provincial Science and Technology Association,2003:94-96.

[21]申晓毅,翟玉春,刘岩. 超声水热法制备单分散球形二氧化硅及因素分析[J]. 化工学报,2008(9):2407-2411. 

SHEN X Y, ZHAI Y C, LIU Y. Preparation of monodisperse spherical silica by ultrasonic hydrothermal method and factor analysis[J]. CIESC Journal,2008(9):2407-2411.

[22]申晓毅, 翟玉春, 孙毅,等 . 球形二氧化硅微粉的微波辅助制备和表征[J]. 东北大学学报(自然科学版),2011, 32(7):985-987. 

SHEN X Y, ZHAI Y C, SUN Y, et al. Microwave-assisted preparation and characterization of spherical silica micro powders[J]. Journal of Northeastern University (Natural Science Edition),2011,32(7):985-987.

[23]KOU H M, WANG J, PAN Y B, et al. Hollow Al2O3 microspheres derived from Al/AlOOH·nH2O core-shell particles[J]. Journal of the American Ceramic Society,2005,88(6):1615-1618.

[24]HWANG J, LEE J H, CHUN J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate[J]. Materials Letters,2021,283:128765.

[25]王昭. 粒度形貌可控碳化硅粉体的制备工艺研究[D]. 武汉:武汉工程大学,2018. 

WANG Z. Research on the preparation process of silicon carbide powder with controllable particle size and morphology [D]. Wuhan: Wuhan University of Engineering,2018. 

[26]张茜,董桂霞,瞿海洋,等 . 溶胶-凝胶法制备 Al2O3粉体及其陶瓷的性能研究[J]. 人工晶体学报,2016,45(1): 151-156. 

ZHANG X, DONG G X, QU H Y, et al. Study on the properties of Al2O3 powder and its ceramics prepared by sol-gel method[J]. Journal of Synthetic Crystals,2016,45(1):151-156. 

[27]XU J, WANG H, ZHAO Z. Preparation of spherical AlN powders by combined microemulsion method and carbothermal method[J]. Ceramics International,2019,45(10):12708-12715. 

[28]MA X Y, CHEN Y Y, QIAN J C, et al. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method[J]. Materials Chemistry and Physics,2016,183:220-229.

[29]王守平,孙俊才,马雪刚,等. 硫酸铝铵制高纯氧化铝粉的性能表征[J]. 真空电子技术,2007(4):10-13,41. 

WANG S P, SUN J C, MA X G, et al. Characterization of high-purity alumina powder made from ammonium aluminum sulfate[J]. Vacuum Electronics Technology,2007(4):10-13,41.

[30]吴利民,段先健,杨本意,等. 气相二氧化硅的制备方法及其特性[J]. 广东化工,2004(2):3-4,16. 

WU L M, DUAN X J, YANG B Y, et al. Preparation and characterization of fumed silica[J]. Guangdong Chemical Industry,2004(2):3-4,16.

[31]张政阳. 水热法制备氧化铝纳米粉体及其形貌的研究[D]. 西安:陕西科技大学,2012. 

ZHANG Z Y. Preparation of alumina nano-powders and their morphology by hydrothermal method [D]. Xi,an: Shaanxi University of Science and Technology,2012. 

[32]WANG J T, GE L, LI Z Q, et al. Facile size-controlled synthesis of well-dispersed spherical amorphous alumina nanopar⁃ ticles via homogeneous precipitation[J]. Ceramics International,2016,42(7):8545-8551.

[33]骆锋,阮建明,万千. 微乳液法制备纳米二氧化硅粉末工艺的研究[J]. 硅酸盐通报,2004(5):48-52. 

LUO F, RUAN J M, WAN Q. Study on the preparation of silica nano-powder by microemulsion method[J]. Bulletin of the Chinese Ceramic Society,2004(5):48-52.

[34]张庆磊,郝振华,李静,等. 感应等离子体球化法制备球形金属粉体的研究进展[J]. 稀有金属材料与工程,2020, 49(8):2895-2903. 

ZHANG Q L, HAO Z H, LI J, et al. Progress in the preparation of spherical metal powders by induction plasma spherization[J]. Rare Metal Materials and Engineering,2020,49(8):2895-2903.

[35]王建军,郝俊杰,郭志猛,等 . 射频等离子体制备球形粉末的数值模拟[J]. 中国科技论文,2015,10(22):2642- 2647.

WANG J J, HAO J J, GUO Z M, et al. Numerical simulation of RF plasma preparation of spherical powder[J]. China Science Paper,2015,10(22):2642-2647.

[36]KASSAEE M Z, SOLEIMANI-AMIRI S, BUAZAR F. Diverse tungsten nanoparticles via arc discharge[J]. Journal of Manufacturing Processes,2010,12(2):85-91.

[37]ZHANG Z L, WANG C, SUN Q, et al. Spheroidization of tungsten powder by a DC arc plasma generator with multiple cathodes[J]. Plasma Chemistry and Plasma Processing,2022,42(4):939-956.

[38]SONG J, KIM B, PARK D, et al. Fabrications of spherical alumina particles by controlling process parameters in a transferred arc plasma system[J]. Ceramics International,2020,46(13):21225-21232.

[39]KUMAR S, SELVARAJAN V. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet[J]. Materials Characterization,2008,59(6):781-785.

[40]LI B Q, SUN Z Q, JIN H C, et al. Fabrication of homogeneous tungsten porous matrix using spherical tungsten powders prepared by thermal plasma spheroidization process[J]. International Journal of Refractory Metals and Hard Materials, 2016,59:105-113.

[41]WANG J J, HAO J J, GUO Z M, et al. Preparation of spherical tungsten and titanium powders by RF induction plasma processing[J]. Rare Metals,2015,34(6):431-435.

[42]邱振涛. 难熔金属(钨、铬)粉末的等离子球化处理及多孔材料制备[D]. 合肥:合肥工业大学,2017. QIU Z T. Plasma spheroidization of refractory metal (tungsten, chromium) powders and preparation of porous materials [D]. Hefei: Hefei University of Technology,2017.

[43]王运锋. 射频等离子体制备球形TC4钛合金粉[J]. 钛工业进展,2013,30(6):44. WANG Y F. Preparation of spherical TC4 titanium alloy powder by radiofrequency plasma[J]. Advances in Titanium Industry,2013,30(6):44.

[44]王广雷,谢俊,蔡棋,等 . 射频等离子体飞行熔化制备石英玻璃微球研究[J]. 硅酸盐通报,2020,39(6):1942- 1948,1959. WANG G L, XIE J, CAI Q, et al. Preparation of quartz glass microspheres by RF plasma in-flight melting[J]. Bulletin of the Chinese Ceramic Society,2020,39(6):1942-1948,1959. 

[45]RAZUMOV N G, POPOVICH A A, WANG Q. Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying[J]. Metals and Materials International,2018,24(2):363-370.

[46]谢睿宁,张国旺,肖骁,等. 颗粒球化技术及装备的研究现状[J]. 中国粉体技术,2022,28(2):106-113. 

XIE R N, ZHANG G W, XIAO X, et al. Research status of particle spherization technology and equipment[J]. China Powder Science and Technology,2022,28(2):106-113.

[47]宋美慧, 李岩, 张煜, 等 . 直流电弧热等离子体球化处理 TA1粉末工艺研究[J]. 稀有金属材料与工程, 2023, 52(2):617-622. SONG M H, LI Y, ZHANG Y, et al. Research on TA1 powder treatment by direct current arc thermal plasma spherization [J]. Rare Metal Materials and Engineering,2023,52(2):617-622.

[48]WANG L Z, WU J J, ZHANG D J. Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma[J]. International Journal of Refractory Metals and Hard Materials,2017,67:90-97.

[49]张莹莹,刘国辉,周武平,等. 球形钨粉的制备及粉末特性研究[J]. 中国钨业,2019,34(2):43-49. 

ZHANG Y Y, LIU G H, ZHOU W P, et al. Preparation and powder characterization of spherical tungsten powder[J]. China Tungsten Industry,2019,34(2):43-49.

[50]HE J P, BAI L Y, JIN H C, et al. Optimization of tungsten particles spheroidization with different size in thermal plasma reactor based on numerical simulation[J]. Powder Technology,2016,302:288-297.

[51]张玮,尚青亮,刘捷,等. 气体雾化法制备粉体方法概述[J]. 云南冶金,2018,47(6):59-63. 

ZHANG W, SHANG Q L, LIU J, et al. Overview of powder preparation methods by gas atomization[J]. Yunnan Metallurgy,2018,47(6):59-63.

[52]邹宇,廖先杰,赖奇,等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展,2019,38(11):1093-1101. 

ZOU Y, LIAO X J, LAI Q, et al. Current status of research on preparation technology of spherical titanium powder for 3D printing[J]. Materials China,2019,38(11):1093-1101.

[53]芦博昕. 高性能粉末冶金钛合金制备与研究[D]. 北京:北京科技大学,2022.

LU B X. Preparation and research of high-performance powder metallurgy titanium alloy [D]. Beijing: University of Science and Technology Beijing,2022.

[54]吴文恒,王涛,范玎 . 增材制造用球形金属粉末主要制备技术的研究进展[J]. 机械工程材料,2021,45(11): 76-83. 

WU W H, WANG T, FAN D. Research progress on the main preparation technologies of spherical metal powders for additive manufacturing[J]. Materials for Mechanical Engineering,2021,45(11):76-83.

[55]刘娜,李周,袁华,等. 气雾化TiAl合金粉末的制备及表征[J]. 钢铁研究学报,2011,23(增刊2):537-540. 

LIU N, LI Z, YUAN H, et al. Preparation and characterization of aerosolized TiAl alloy powder[J]. Journal of Iron and Steel Research,2011,23(S2):537-540. 

[56]ZHENG M Y, ZHANG S M, HU Q, et al. A novel crucible-less inert gas atomisation method of producing titanium powder for additive manufacturing[J]. Powder Metallurgy,2019,62(1):15-21.

[57]HAN Z Y, ZHANG P X, LEI L M, et al. Morphology and particle analysis of the Ni3Al-based spherical powders manufactured by supreme-speed plasma rotating electrode process[J]. Journal of Materials Research and Technology, 2020,9(6):13937-13944.

[58]CHEN G, ZHAO S Y, TAN P, et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization[J]. Powder Technology,2018,333:38-46.

[59]李晓辉,陈斌科,凤治华,等. 等离子旋转电极雾化制备钨粉及性能表征[J]. 粉末冶金工业,2022,32(1):15-19. 

LI X H, CHEN B K, FENG Z H, et al. Preparation of tungsten powder by plasma rotating electrode atomization and performance characterization[J]. Powder Metallurgy Industry,2022,32(1):15-19.

[60]刘军,许宁辉,于建宁 . 用等离子旋转电极雾化法制备 TC4 合金粉末的研究[J]. 宁夏工程技术,2016,15(4): 340-342. 

LIU J, XU N H, YU J N. Research on the preparation of TC4 alloy powder by plasma rotating electrode atomization[J]. Ningxia Engineering Technology,2016,15(4):340-342.

[61]郭广浩,唐超兰,楚瑞坤. 金属增材制造用钛粉制备研究[J]. 粉末冶金技术,2022,40(4):340-350. 

GUO G H, TANG C L, CHU R K. Preparation of titanium powder for metal additive manufacturing[J]. Powder Metallurgy Technology,2022,40(4):340-350.

[62]ARITA S, AOAYAGI N, OHSHITA K, et al. Synthesis and characterization of spherical alumina nanoparticles by spray pyrolysis using radio frequency plasma[J]. Journal of the Ceramic Society of Japan,2017,125(6):539-542.

[63]刘洋,贾庆明,蒋丽红,等. 超声雾化法制备超细粉体的研究进展[J]. 化工新型材料,2019,47(5):213-217. 

LIU Y, JIA Q M, JIANG L H, et al. Research progress on the preparation of ultrafine powders by ultrasonic atomization [J]. New Chemical Materials,2019,47(5):213-217.

[64]陈杨,陈志刚,刘强,等. 超声雾化法制备单分散纳米CeO2粉体研究[J]. 化学工程,2009,37(11):55-58. 

CHEN Y, CHEN Z G, LIU Q, et al. Preparation of monodisperse CeO2 nanopowder by ultrasonic atomization[J]. Chemical Engineering,2009,37(11):55-58.

[65]HOU H C, JI Z J, XIE Z, et al. Spheroidizing mechanisms and simulation of spherical silica in oxygen-acetylene flame [J]. Advanced Powder Technology,2018,29(3):789-795. 

[66]JIN H Y, XU L, HOU S. Preparation of spherical silica powder by oxygen-acetylene flame spheroidization process[J]. Journal of Materials Processing Technology,2009,210(1):81-84.

[67]谢强,管登高,杨辉勇. 火焰熔融法制备电子封装用球形硅微粉制备与表征[J]. 当代化工研究,2022(11):18-20. 

XIE Q, GUAN D G, YANG H Y. Preparation and characterization of spherical silicon micro powders for electronic encapsulation by flame melting[J]. Contemporary Chemical Research,2022(11):18-20.