黄 瑶, 赵云菲, 覃镜元, 尹茜茜, 范俊哲, 林龙沅
(西南科技大学 环境与资源学院, 四川 绵阳 621010)
引用格式:
黄瑶, 赵云菲, 覃镜元, 等. 滤筒除尘器喷吹孔孔径的优化[J]. 中国粉体技术, 2024, 30(2): 60-66.
HUANG Y, ZHAO Y F, QIN J Y, et al. Optimization of blowing hole aperture of cartridge dust collector[ J]. China Powder Science and Technology, 2024, 30(2): 60-66.
DOI:10.13732 / j.issn.1008-5548.2024.02.005
收稿日期: 2023-08-12,修回日期:2023-12-04,上线日期:2024-01-12。
基金项目: 国家自然科学基金项目,编号:52204286;四川省科技计划资助项目,编号:2023YFS0362。
第一作者简介:黄瑶(1998—),男,硕士生,研究方向为工业通风与除尘。 E-mail: 872843176@qq.com。
通信作者简介:林龙沅(1981—),男,教授,博士,硕士生导师,研究方向为气流粉碎、分级与除尘净化。 E-mail: Lly7572@126.com。
摘要: 【目的】为控制各个喷吹管气流量的均匀性,对喷吹管上的喷吹孔径进行优化,提高滤筒除尘器清灰效果。 【方法】自制高压脉冲喷吹气流量测量装置对现有喷吹管气流量进行测定,采用光纤传感分析仪测试除尘器滤筒各部分的侧壁压力峰值,分析各滤筒清灰效果不均匀的原因;以滤筒各部位侧壁压力峰值作为清灰均匀性效果评估指标,优化喷吹孔径。 【结果】优化前 4 个喷吹孔径均为 19 mm,喷吹孔的气流量依次为 13. 69、 14. 78、 16. 03、 16. 93 L,对应 4 个滤筒上、 中、 下部侧壁压力峰值的最小值分别为最大值的 37%、 26%、 20%,气流量均匀度标准差为 1. 41;优化后 4 个喷吹孔径分别为 23、 20、 18、 17 mm,喷吹气流量依次为 14. 05、 15. 08、 15. 87、 16. 13 L,对应 4 个滤筒上、 中、 下部测壁压力峰值的最小值为最大值的 56%、 56%、 53%,气流量均匀度标准差降为 0. 93。 【结论】优化后的喷吹管气流量均匀化程度提高,可实现滤筒除尘器的均匀清灰。
关键词: 滤筒除尘器; 喷吹孔; 孔径; 气流量; 侧壁压力峰值
Abstract
Objective Pulse-blowing cartridge dust collectors are widely used for their exceptional dust removal efficiency. However, the existing blowpipe design adopts the same blowing aperture, which makes the cartridge cleaning effect poor, negatively affecting the overall cleaning effect of the cartridge dust collector and the cartridge’s service life. In order to achieve the uniformity through the airflow of the blowpipe and achieve consistently effect of uniform dust cleaning across the cartridge dust collector, optimizing the blowing orifice diameter of the blowpipe is essential.
Methods Firstly, the peak pressure on the sidewalls of each part of the filter cartridge was measured and a self-made pulseblowing gas flow measurement device was used to measure the porous blowing gas flow of the existing cartridge dust collector to analyze the inhomogeneity of the soot cleaning effect. Secondly, the effect of the blowing aperture on the blowing air flow rate and sidewall pressure peak value of the cartridge was investigated to optimize the blowing aperture. Finally, the optimization effect was evaluated by taking the sidewall pressure peak value of each part of the cartridge as an index.
Results and Discussion Before optimization, all four blowholes possess diameters of 19 mm, with air flow rates of 13. 69, 14. 78,16. 03 and 16. 93 L, resulting in a standard deviation of 1. 41, indicating the air flow rate uniformity. The peak sidewall pressures at the upper measurement points of the four canisters are 369, 713, 971 and 1 000 Pa, respectively. At the middle,pressrues are 699, 1 472, 1 601 and 2 627 Pa, which are 694, 1 612, 2 357 and 3 416 Pa at the lower points. The maximum difference in sidewall pressure (between the maximum and minimum values) at the upper, middle and lower parts of the cartridges is 631, 1 928 and 2 722 Pa, respectively. The minimum value of the peak sidewall pressure at the upper, middle and lower parts of the four cartridges is 37%, 26% and 20% of the maximum value. After optimization, the blowholes diameters are adjusted to 23, 20, 18 and 17 mm, with air flow rates of 14. 05, 15. 08, 15. 87 and 16. 13 L, resuiling in a reduced standard deviation of 0. 93, indicating the improved air flow rates uniformity. The peak sidewall pressures at the upper measurement points of the four canisters are 500, 850, 898 and 767 Pa, respectively. At the middle points, pressures are 1 350,1 517, 1 708 and 2 400 Pa, and they are 1 601, 2 033, 2 323, 3 027 Pa at the lower measurement points. The maximum difference in sidewall pressure at the upper, middle and lower parts of the cartridges is 398, 1 050 and 1 426 Pa, respectively. The minimum value of the peak sidewall pressure at the upper, middle and lower parts of the four cartridges is 56%, 56% and 53% of the maximum value.
Compared with before optimization, the homogeneity increases by 1. 5, 2. 2 and 2. 7 times, respectively.
Conclusion The non-uniformity of the air-flow rate of different blow holes on the same blow pipe was verified by the pulse-blowing airflow measuring device. The uniformity of the airflow rate was improved after optimizing the diameter of the blow holes. The range of variation of the peak pressure on the sidewall was reduced, and the uniformity of the cartridge ash cleaning was significantly improved.
Keywords: filter cartridge dust collector; blowing hole; aperture; air flow rate; peak of sidewall pressure
参考文献(References):
[1]蒋薇. 工业大气污染防控研究[J]. 环境科学与管理, 2017, 42(9): 100-104.
JIANG W. Study on prevention and control of industrial air pollution[ J]. Environmental Science and Management, 2017,42(9): 100-104.
[2]鲁洋, 张敏, 陈卫红. 生产性粉尘危害作业分级标准应用情况调查[ J]. 中华劳动卫生职业病杂志, 2017, 35(4):269-272.
LU Y, ZHANG M, CHEN W H. Investigation on standard application of industrial dust hazard classification[ J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2017, 35(4): 269-272.
[3]陈冬. 除尘器的发展及在车间除尘中的应用[J]. 山东化工, 2021, 50(16): 252-254.
CHEN D. Development of dust collector and its application in workshop dust removal[ J]. Shandong Chemical Industry,2021, 50(16): 252-254.
[4]姚群, 宋七棣, 陈志炜. 2020 年袋式除尘行业发展评述和展望[J]. 中国环保产业, 2021, 3: 19-22.
YAO Q, SONG Q L, CHEN Z W. Review and prospect of bag dust removal industry in 2020[J]. Environmental Protection Industry in China, 2021, 3: 19-22.
[5]刘慧, 郝显福, 郭小芳, 等. 袋式除尘器与滤筒式除尘器在机加工行业中实际应用效果的对比研究[ J]. 甘肃冶金,2021, 43(3): 64-67.
LIU H, HAO X F, GUO X F, et al. Comparative study on practical application effect of bag filter and filter cartridge filter inmachining industry[J]. Gansu Metallurgy, 2021, 43(3): 64-67.
[6]GAO D H, ZHOU G, YANG Y, et al. Design of pulse cleaning device for single-filter cartridge dust collector by multi-factor orthogonal method based numerical simulation[J]. Powder Technology, 2021, 391(1): 494-509.
[7]易策明. 脉冲式滤筒除尘器[J]. 玻璃, 2015, 42(11): 13-17.
YI C M. Pulse filter cartridge dust collector[J]. Glass, 2015, 42(11): 13-17.
[8]赵美丽, 周睿, 沈恒根. 袋式除尘器喷吹管设计参数对喷吹气量影响的计算分析[ J]. 环境工程, 2012, 30( 3):63-66.
ZHAO M L, ZHOU R, SHEN H G. Calculation and analysis for the impact of the injection pipe design parameters on mass flow rate in bag filter[J]. Environmental Engineering, 2012, 30(3): 63-66.
[9]LU H, TSAI C. A pilot-scale study of the design and operation parameters of a pulse-jet baghouse[J]. Aerosol Science and Technology, 1998, 29(6): 510-524.
[10]李建, 李建伟. 滤筒除尘器脉冲清灰参数优化设计[J]. 一重技术, 2019, 187: 55-58.
LI J, LI J W. Optimal design of pulse cleaning parameters of filter cartridge dust collector[J]. Yizhong Technology, 2019,187: 55-58.
[11]张殿印, 王纯. 除尘器手册[M]. 北京: 化学工业出版社, 2015: 102-103.
ZHANG D Y, WANG C. Manual of dust collector[M]. Beijing: Chemical Industry Press, 2005: 102-103.
[12]QIAN Y L, CHEN H Y, DAI H D, et al. Experimental study of the nozzle settings on blow tube in a pulse-jet cartridge filter[J]. Separation and Purification Technology, 2018, 191: 244-249.
[13]毕远霞, 张留祥, 钱云楼. 喷嘴总面积与喷吹管截面积比对滤袋清灰性能的影响[ J]. 环境工程学报, 2017,11(7): 4210-4216.
BI Y X, ZHANG L X, QIAN Y L. Influence of the ratio of total nozzle area to cross-sectional area of blowpipe on dust removal performance of filter bag[J]. Journal of Environmental Engineering, 2017, 11(7): 4210-4216.
[14]QIAN Y L, BI Y X, ZHANG Q, et al. The optimized relationship between jet distance and nozzle diameter of a pulse-jet cartridge filter[J]. Powder Technology, 2014, 266: 191-195.
[15]LI S H, ZHOU F B, XIE B, et al. Influence of injection pipe characteristics on pulse-jet cleaning uniformity in a pleated cartridge filter[J]. Powder Technology, 2018, 328: 264-274.
[16]杨迪, 陈海焱, 李怀玉, 等. 脉冲喷吹滤筒除尘器清灰效果实验研究[J]. 暖通空调, 2008, 38(4): 112-115.
YANG D, CHEN H Y, LI H Y, et al. Experimental study on cleaning effect of pulse jet filter cartridge dust collector[J].Heating, Ventilating and Air Conditioning, 2008, 38(4): 112-115.
[17]林龙沅, 刘佳莹, 杨婷, 等. 一种用于测量高压瞬态脉冲喷吹气流量装置: CN115752613A[P]. 2023-03-07.
LIN L Y, LIU J Y, YANG T, et al. A device for measuring the flow rate of high-pressure transient pulse jet:CN115752613A[P]. 2023-03-07.
[18]YAN C P, LIU G J, CHEN H Y. Effect of induced airflow on the surface static pressure of pleated fabric filter cartridges during pulse jet cleaning[J]. Powder Technology, 2013, 249: 424-430.