ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第2期
<返回第2期

颗粒缩放理论标定未筛选烟煤离散元仿真参数

Discrete elemental simulation parameters of unscreened bituminous coal calibrated by particle scaling theory


梅 潇, 吴苇荣, 刘祥伟

(上海海事大学 物流工程学院, 上海 201306)


引用格式:

梅潇, 吴苇荣, 刘祥伟. 颗粒缩放理论标定未筛选烟煤离散元仿真参数[J]. 中国粉体技术, 2024, 30(2): 67-81.

MEI X, WU W R, LIU X W. Discrete elemental simulation parameters of unscreened bituminous coal calibrated by particle scaling theory[J]. China Powder Science and Technology, 2024, 30(2): 67-81.

DOI:10.13732 / j.issn.1008-5548.2024.02.007

收稿日期: 2023-11-08,修回日期:2023-11-30,上线日期:2024-01-14。

基金项目: 国家自然科学基金项目,编号:52105466;上海科委浦江人才计划项目,编号:21PJ1404600。

第一作者简介:梅潇(1974—),女,副教授,博士,硕士生导师,研究方向为港口机械的结构设计与安全评估、焊接结构的现代设计方法和多相场仿真。E-mail: xiaomei@shmtu.edu.cn。


摘要: 【目的】为了给未筛选烟煤的仿真研究提供参数依据, 分析未筛选烟煤的离散元仿真参数, 保证仿真与实际颗粒的几何、 材料及运动学相似, 实现未筛选烟煤的可靠仿真研究。 【方法】采用实验和仿真相结合的方法, 测得未筛选烟煤的粒径分布、 密度、 静摩擦因数、 堆积密度、 休止角等基本参数; 基于颗粒缩放理论, 建立不同粒径范围内典型颗粒的放大模型,通过 Plackett-Burman、最陡爬坡、 Box-Behnken 试验对未筛选烟煤的泊松比、 切变模量、 滚动摩擦因数、 恢复系数、 Johnson-Kendall-Roberts(JKR)表面能等仿真参数进行标定。 【结果】以实验和仿真休止角相对误差最小为优化目标, 得到最优参数组合下的未筛选烟煤的仿真休止角为 37. 59°, 与休止角实验值 37. 81°的误差为 0. 58%; 仿真堆积密度为 717 kg / m3, 与堆积密度实验值 722 kg / m3 的误差为 0. 69%。 【结论】煤-煤恢复系数与休止角呈负相关, 煤-煤和煤-钢滚动摩擦因数与休止角呈正相关,溅射现象会阻碍颗粒堆积。

关键词: 烟煤; 离散元; 休止角; 颗粒缩放理论; 参数标定

Abstract

Objective In recent years, the proportion of coal in port traffic has been increased. Unscreened bituminous coal, as an important fuel for power plants or industrial boilers, is one of the widely utilized coal types. Therefore, conducting simulation studies on the transport process of unscreened bituminous coal holds extreme importance. However, according to different simulation conditions,it is usually necessary to scale the particle size of unscreened bituminous coal to meet various simulation requirements. The validity of setting particle discrete element simulation parameters directly affects the accuracy of the simulation results. To obtain discrete elemental simulation parameters for unscreened bituminous coal particles after scaling processing, the simulation parameters should be calibrated to ensure that it meets the geometric similarity, material similarity and kinematic similarity with the actual particles.

Methods In this study, optimal parameter combinations for the discrete element simulation of unscreened bituminous coal were determined through a combination of physical experiments and simulation. Firstly, the basic parameters of bituminous coal, such as particle size distribution, density, static friction coefficients, bulk density, and angle of repose, were determined through physical experiments. Subsequently, typical particle models within different particle size ranges were established and the particle sizes were magnified by a factor of five using particle scaling theory principles. This approach aimed to shorten simulation time and reduce the computational demands on the computer performance during simulations. Following this, the Plackett-Burman (P-B) test was employed to analyze the significance of calibration parameters, including Poisson's ratio, shear modulus, rolling friction coefficient, restitution coefficient and Johnson-Kendall-Roberts (JKR) surface energy. The steepest ascent test was then utilized to quickly determine the range of optimal parameter combinations for the simulated angle of repose. Subsequently, a quadratic regression equation linking the significance parameters to the angle of repose was established by Box-Behnken (B-B) test.

Results and Discussion With the optimization objective of minimizing the relative error between the experimental and simulated angle of repose, the optimal parameter combinations are as follows: density at 1 326 kg / m3, Poisson's ratio at 0. 4, shear modulus at 0. 67 GPa, coal-coal static friction coefficient at 0. 72, coal-steel static friction coefficient at 0. 41, coal-coal rolling friction coefficient at 0. 107, coal-steel rolling friction coefficient at 0. 095, coal-coal restitution coefficient at 0. 5, coal-steel restitution coefficient at 0. 15 and the JKR surface energy is 14 J/ m2. The simulated angle of repose under the optimal parameter combination is determined to be 37. 59°, with a mere 0. 58% relative error from the experimental value of 37. 81°. Additionally, the simulated bulk density is 717 kg / m3, with a mere 0. 69% relative error from the experimental value of 722 kg / m3.

Conclusion 1) Among the calibrated parameters, the parameters that have a significant influence on the angle of repose are:coal-coal restitution coefficient, coal-coal rolling friction coefficient and coal-steel rolling friction coefficient in sequence. The influence of the coal-coal rolling friction coefficient on the angle of repose is particularly significant. 2) The primary terms of the three significant parameters, the quadratic terms of coal-coal restitution coefficient and coal-coal rolling friction coefficient, and the interaction terms of coal-coal restitution coefficient and coal-coal rolling friction coefficient have significant influence on the angle of repose. The influence of the primary terms of the coal-coal restitution coefficient and coal-coal rolling friction coefficient on the angle of repose are particularly significant. 3) The coal-coal restitution coefficient is negatively correlated with the angle of repose, while coal-coal and coal-steel rolling friction coefficients show a positive correlation with the angle of repose. Additionally,sputtering phenomena are observed to hinder particle packing. 4) The above simulation parameter combinations are only applicable to the simulation study of unscreened bituminous coals at a 5-fold enlargement of particle size. Since the primary terms of the coal-coal restitution coefficient and coal-coal rolling friction coefficient are known to have a particularly significant influence on the angle of repose, only the coal-coal restitution coefficient and coal-coal rolling friction coefficient need to be recalibrated using the same method when determining the simulation parameter combinations for unscreened bituminous coal at the remaining multiples of the particle size.

Keywords: bituminous coal; discrete element; angle of repose; particle scaling theory; calibration of parameter


参考文献(References):

[1]黄文景. 砂质土壤颗粒离散元模型参数标定[J]. 福建建材, 2023(2): 1-5.

HUANG W J. Parameter calibration of discrete element model of sandy soil particles [ J]. Fujian Building Materials,2023(2): 1-5.

[2]洪波, 樊志鹏, 乌兰图雅, 等. 揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[ J]. 中国农业科技导报, 2023, 25(3): 96-106. 

WANG H B, FAN Z P, WU L, et al. Parameter calibration of discrete element model for simulation of crushed corn stalk screw conveying[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 96-106.

[3]MA G G, SUN Z J, MA H, et al. Calibration of contact parameters for moist bulk of shotcrete based on EDEM[ J]. Advances in Materials Science and Engineering, 2022, 2022: 6072303.

[4]FANG M, YU Z H, ZHANG W J, et al. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology[J]. Powder Technology, 2022, 396: 731-742.

[5]WANG Y K, WANG G Q, WU S W, et al. A calibration method for ore bonded particle model based on deep learning neural network[J]. Powder Technology, 2023, 420: 118417.

[6]LI X Y, DU Y F, LIU L, et al. Parameter calibration of corncob based on DEM[J]. Advanced Powder Technology, 2022,33(8): 103699.

[7]SONG X F, DAI F, ZHANG F W, et al. Calibration of DEM models for fertilizer particles based on numerical simulations and granular experiments[J]. Computers and Electronics in Agriculture, 2023, 204: 107507.

[8] ZHU J Z, ZOU M, LIU Y S, et al. Measurement and calibration of DEM parameters of lunar soil simulant[ J]. Acta Astronautica, 2022, 191: 169-177.

[9]DING X T, WANG B B, HE Z, et al. Fast and precise DEM parameter calibration for Cucurbita ficifolia seeds[J]. Biosystems Engineering, 2023, 236: 258-276.

[10]孟丽英. 新形势下港口运输经济问题探析[J]. 商展经济, 2022(5): 89-92. 

MENG L Y. Analysis of the economic problems of port transportation under the new situation[ J]. Trade Fair Economy, 2022(5): 89-92.

[11]贾大山, 徐迪, 蔡鹏. 2021 年沿海港口发展回顾与 2022 年展望[J]. 中国港口, 2022(1): 3-14. 

JIA D S, XU D, CAI P. Review of coastal port development in 2021 and prospect in 2022[ J]. China Ports, 2022(1): 3-14.

[12]高宏杰. 煤炭行业发展现状和供需形势分析[J]. 中国煤炭工业, 2022(3):75-77. 

GAO H J. Analysis of development status and supply and demand situation of coal industry [ J]. China Coal Industry, 2022(3): 75-77.

[13]夏蕊, 杨兆建, 李博, 等. 基于离散元法的煤散料堆积角试验研究[J]. 中国粉体技术, 2018, 24(6): 36-42. 

XIA R, YANG Z J, LI B, et al. Experimental study for repose angle of coal bulk material based on discrete element method [J]. China Powder Science and Technology, 2018, 24(6): 36-42.

[14]李铁军. 煤颗粒离散元模型宏细观参数标定及其关系[D]. 太原:太原理工大学, 2019. 

LI T J. Calibration of DEM model parameters for coal particles and research on relationships between macro and micro parameters[D]. Taiyuan: Taiyuan University of Technology, 2019.

[15]李铁军, 王学文, 李博, 等. 基于离散元法的煤颗粒模型参数优化[J]. 中国粉体技术, 2018, 24(5): 6-12. 

LI T J, WANG X W, LI B, et al. Optimization method for coal particle model parameters based on discrete element method [J]. China Powder Science and Technology, 2018, 24(5): 6-12.

[16]MEI L, HU J Q, YANG J G, et al. Research on parameters of EDEM simulations based on the angle of repose experiment [C] / / International Conference on Computer Supported Cooperative Work in Design. Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design. United States: Institute of Electrical and Electronics Engineers Inc., 2016: 570-574.

[17]ZHANG H, ZHENG M X, RONG Y, et al. Calibration and sensitivity analysis of macro and meso parameters of discrete element model for coal measure soil[C] / / International Conference on Applied Mechanics, Materials Physics, and Engineering Structures. Journal of Physics: Conference Series. Institute of Physics, 2023, 2519(1): 012036.

[18]LI H B, LI D Y, ZHANG W Y, et al. Numerical damping calibration study of particle element method-based dynamic relaxation approach for modeling longwall top-coal caving[J]. Energies, 2021, 14(9): 2348.

[19]MA H Z, WANG X W, LI B, et al. Calibration of discrete element microparameters of coal based on the response surface method[J]. Particulate Science and Technology, 2022, 40(5): 543-557.

[20]XIA R, LI B, WANG X W, et al. Measurement and calibration of the discrete element parameters of wet bulk coal[ J]. Measurement, 2019, 142: 84-95.

[21]中国机械工业联合会. 连续搬运设备散状物料分类、 符号、 性能及测试方法: GB/ T 35017—2018[ S]. 北京: 中国标准出版社, 2018. China Machinery Industry Federation. Continuous handling equipments—Classification, symbols, performance and test methods for bulk materials: GB/ T 35017—2018[S]. Beijing: Standards Press of China, 2018.

[22]黄松元. 散体力学[M]. 北京:机械工业出版社, 1993: 159-161. 

HUANG S Y. Mechanics of granular media[M]. Beijing: China Machine Press, 1993:159-161.

[23]FENG Y T, HAN K, OWEN D R J, et al. On upscaling of discrete element models: similarity principles[J]. Engineering Computations, 2009, 26(6): 599-609.

[24]任建莉, 周龙海, 韩龙, 等. 基于颗粒缩放理论的垂直螺旋输送离散模拟[J]. 过程工程学报, 2017, 17(5): 936-943. 

REN J L, ZHOU L H, HAN L, et al. Discrete simulation of vertical screw conveyor based on particle scaling theory[J]. The Chinese Journal of Process Engineering, 2017, 17(5): 936-943.

[25]E SILVA B B, DA CUNHA E R, DE CARVALHO R M, et al. Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method[J]. Powder Technology, 2018, 332: 359-370.

[26]孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京: 科学出版社, 2009: 20-22. 

SUN Q C, WANG G Q. Introduction to granular material mechanics[M]. Beijing: Science Press, 2009: 20-22.

[27]谢仁海, 渠天祥, 钱光谟. 构造地质学[M]. 2 版. 徐州: 中国矿业大学出版社, 2007: 47-49. 

XIE R H, QU T X, QIAN G M. Geotectonics[M]. 2nd ed. Xuzhou: China University of Mining and Technology Press, 2007: 47-49.

[28]邹洋, 汤佟, 高自成, 等. 基于颗粒缩放理论的生石灰粉离散元参数标定[J]. 中国粉体技术, 2023, 29(2): 81-91.

ZOU Y, TANG T, GAO Z C, et al. Discrete element parameter calibration of quicklime powder based on particle scaling theory[J]. China Powder Science and Technology, 2023, 29(2): 81-91.