ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第2期
<返回第2期

喂料方式对粉体气力分级性能的影响及成因分析

Influence of feeding methods on classification performance of powder pneumatic classification and cause analyses


于 源a, 刘克润a, 刘晓勇a, 刘家祥b, 焦志伟a, 付俊杰a

(北京化工大学 a. 机电工程学院, b. 材料电化学过程与技术北京市重点实验室, 北京 100029)


引用格式:

于源, 刘克润, 刘晓勇, 等. 喂料方式对气力分级性能的影响及成因分析[J]. 中国粉体技术, 2024, 30(2): 36-44.

YU Y, LIU K R, LIU X Y, et al. Influence of feeding methods on classification performance of powder pneumatic classification and cause analyses[J]. China Powder Science and Technology, 2024, 30(2): 36-44.

DOI:10.13732 / j.issn.1008-5548.2024.02.004

收稿日期: 2023-10-12,修回日期:2023-11-27,上线日期:2024-01-16。

基金项目:国家自然科学基金项目,编号:52174234。

第一作者简介:于源(1976—),女,副教授,博士,硕士生导师,研究方向为粉体分离技术及设备研发、智能制造及工业自动化。E-mail: yuyuan@mail.buct.edu.cn。


摘要: 【目的】为了提高粉体气力分级设备的分级性能,研究螺旋喂料和振动喂料 2 种不同喂料方式对气力分级性能的影响。 【方法】采用高速摄像机对不同喂料方式下粉体下落运动(喂料)进行图像采集,运用图像处理技术对采集到的图像进行处理,通过图像观察法和引入喂料时连续时刻粉体面积分布变异系数分析喂料方式对粉体分散性的影响;通过碳酸钙粉体分级实验方法探讨喂料方式对分级性能的影响。 【结果】相较于螺旋喂料,振动喂料有利于粉体解团,提升粉体喂料时的均匀性和分散性;相较于螺旋喂料方式,振动喂料有助于提升气力分级机的分级性能,尤其在较高的喂料速度下,分级性能提升效果显著,喂料速度为 18 kg / h 时,分级精度提升 185%,旁路值减小 75%,“鱼钩效应”峰值点高度降低 29%;粒径小于 10 μm 的超细颗粒在粗粉中占比从螺旋喂料时的 11. 4%减小到振动喂料时的 4. 4%,粗粉中细粉占比大幅减小,粗细颗粒分离效果得到改善。 【结论】螺旋喂料不适合输运黏性较强、 流动性较差的粉体,如碳酸钙;振动喂料可改善粉体材料的喂料均匀性和分散程度,有利于提高气力分级机分级性能。

关键词: 粉体; 气力分级; 喂料方式; 鱼钩效应

Abstract

Objective The feeding method is crucial factors influencing the classification performance of the pneumatic classifier. Spiral feeding and vibration feeding are popular feeding method for powder preparation. This study aims to comparatively analyze their effects on the classification performance, providing valuable insights for the theoretical guidanceof structural optimization in the pneumatic classifier.

Methods In this paper, firstly, the image acquisition of the falling motion of material particles ( feeding process) with different feeding methods was carried out using a high-speed camera. The collected images were processed using image processing technology.The influence of feeding methods on powder dispersion was analyzed through image observation and the variation coefficient of the powder distribution area of continuous moments. Then the influence of feeding methods on the classification performance was explored through the CaCO3 powder classification experiments.

Results and Discussion According to the image processing results, there are significant differences in the falling state and dispersion of powder at different feeding methods. Atthe feeding speed of 5 kg / h, the variation coefficients of spiral feeding and vibration feeding are 1. 73 and 0. 16, respectively. This trend continued at higher feeding speeds, with values forspiral feeding and vibration feeding at the feeding speed of 12 kg / h being 1. 38 and 0. 15, and at 18 kg / h being 0. 90 and 0. 12, respectively.Remarkably, the variation coefficient of vibration feeding is smaller than that of spiral feeding at the same feeding speed. According to the CaCO3 powder classification experimental results, the vibration feeding is conducive to improving classification performances of the pneumatic classifier, especially under the operating condition with high feeding speed, ascompared to the spiral feeding method. At the feeding speed of 18 kg / h, the pneumatic classifier exhibits substantial improvements in classification metrics when utilizing vibration feeding. Specifically, the classification accuracy is improved by 185%, the bypass value is decreased by 75% and the peak on the “fish-hook effect” is reduced by 29%. Moreover, the proportion of ultrafine particles less than 10 μm in the coarse powder is decreased from 11. 4% withspiral feeding to 4. 4% using vibration feeding. The proportion of fine particles in the coarse powder is greatly reduced,contributing to animprovement in these paration efficiency between coarse particles and fine particles.

Conclusion Compared to the spiral feeding method, the vibration feeding method is conducive to improving the classification performances of the pneumatic classifier and its classification effects, especially under operatingconditionswith high feeding speed.The vibration feeding method is beneficial to powder disaggregation, which can improve the uniformity and dispersion of powder material feeding compared to the spiral feeding method. The spiral feeding method is not suitable for transporting powder with high viscosity and poor flowability, such as CaCO3 powder, which causes uneven powderdrops during the feeding process and adversely affects the dispersion of the feeding. It is the reason that the vibration feeding method can improve the classification accuracy and weaken the “fish-hook” effect. The research results demonstrate that the vibration feeding method has advantages in transporting easily agglomerated powder compared to the spiral feeding method.

Keywords: powder; pneumatic classification; feeding methods; fish-hook effect


参考文献(References):

[1]卢道铭, 范怡平, 卢春喜. 颗粒空气分级技术研究进展[J]. 中国粉体技术, 2020, 26(6): 11-24.

LU D M, FAN Y P, LU C X. Advances in research on granular air classification[J]. China Powder Science and Technology,2020, 26(6): 11-24.

[2]YU Y, CAO Y N, ZHANG Y, et al. Effects of guide holes on the performance of a vertical turbo air classifier[ J]. The Canadian Journal of Chemical Engineering, 2023, 101(8): 4700-4710.

[3]SUN Z P, LIANG L L, LIU C Y, et al. CFD simulation and performance optimization of a new horizontal turbo air classifier [J]. Advanced Powder Technology, 2021, 32(4): 977-986.

[4]XING W J, WANG Y Z, ZHANG Y, et al. Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier[J]. Powder Technology, 2015, 286: 240-245.

[5]KERINS B M, O’MAHONY M, CREAN A M. Study of the feeding performance of mesoporous silica in a loss-in-weight feeder[J]. Powder Technology, 2023, 424: 11852.

[6]JAMSHIDI E, EBRAHIM A H, BARATI M. A screw-brush feeding system for uniform fine zinc oxide powder feeding and obtaining a homogeneous gas-particle flow[J]. Advanced Powder Technology, 2015, 26: 303-308.

[7]朱顺明, 朱潇敏, 朱长洪, 等. 一种选粉机的喂料装置: CN213255731U[P]. 2021-05-02. 

ZHU S M, ZHU X M, ZHU C H, et al. A feeding device for a powder concentrator: CN213255731U[P]. 2021-05-02.

[8]NEMATOLLAHI E, ZARE S, MALEKI-MOGHADDAM M, et al. DEM-based design of feed chute to improve performance of cone crushers[J]. Minerals Engineering, 2021, 168: 106927.

[9]谢岗, 黄书泽. 一种水泥生产用选粉机的喂料结构: CN210613879U[P]. 2020-05-26.

XIE G, HUANG S Z. A feeding structure of a powder selection machine for cement production: CN210613879U[ P].2020-05-26.

[10]冯永国, 刘家祥, 刘圣照. 喂料方式对涡流空气分级机分级性能的影响[J]. 金属矿山, 2008(1): 93-96.

FENG Y G, LIU J X, LIU S Z. Effect of feeding mode on classification performance of vortex air classifier[ J]. Metal Mine, 2008(1): 93-96.

[11]宋伟. 一种水泥生产用选粉机喂料分散装置: CN216574201U[P]. 2022-05-24.

SONG W. A powder selection machine feeding and dispersing device for cement production: CN216574201U [ P ].2022-05-24.

[12]杨苑, 杨龙寿. 水泥粉料用选粉机的喂料结构: CN204429700U[P]. 2015-07-01.

YANG Y, YANG L S. The feeding structure of the powder selection machine for cement powder: CN204429700U[P].2015-07-01.

[13]SUN Z P, LIANG LL, LIU Q, et al. Effect of the particle injection position on the performance of a cyclonic gas solids classifier[J]. Advanced Powder Technology, 2020, 31(1): 227-233.

[14]盖国胜. 粉体工程[M]. 北京: 清华大学出版社, 2009.

GAI G S. Powder engineering[M]. Beijing: Tsinghua University Press, 2009.

[15]吴震, 王利强, 徐立敏, 等. 细粉体圆锥料仓振动卸料特性[J]. 中国粉体技术, 2023, 29(3): 117-126.

WU Z, WANG L Q, XU L M, et al. Vibration unloading characteristics of fine powder cone silo [ J]. China Powder Science and Technology, 2023,29(3): 117-126.

[16]贾坡. 基于机器视觉的烧结型滚抛磨块缺陷检测方法研究[D]. 太原: 太原理工大学, 2021.

JIA P. Research on defect inspection method of sintered abrasive blocks based on machine vision[D]. Taiyuan: Taiyuan University of Technology, 2021.

[17]张敏. 多源图像融合关键技术研究及应用[D]. 西安: 西安电子科技大学, 2015.

ZHANG M. Research and application on the key techniques of multi-source image fusion[D]. Xi’an: Xi’an University of Electronic Science and Technology, 2015.

[18]邓向武. 基于深度学习的稻田杂草种类识别及其位置检测方法研究[D]. 广州: 华南农业大学, 2019.

DENG X W. The research of the categories identification and target detection with weeds based on deep learning in the paddy field[D]. Guangzhou: South China Agricultural University, 2019.

[19]林书庆. 粗集料粒形及级配对混凝土强度离散性的影响[D]. 重庆: 重庆交通大学, 2021.

LIN S Q. Influence of coarse aggregate shape and gradation on dispersion of concrete strength[D]. Chongqing: Chongqing Jiaotong University, 2021.

[20]罗良清. 统计学[M]. 长沙: 湖南大学出版社, 2014.LUO L Q. Statistics[M]. Changsha: Hunan University Press, 2014.

[21]袁惠新. 分离过程与设备[M]. 北京: 化学工业出版社, 2007.

YUAN H X. Separation process and equipment[M]. Beijing: Chemical Industry Press, 2007.

[22]ESWARAIAH C, ANGADI S I, MISHRA B K. Mechanism of particle separation and analysis of fish-hook phenomenon in a circulating air classifier[J]. Powder Technology, 2012, 218: 57-63.