张晓阳a, 应泽华a, 郭抒博a, 李文龙a, b
(天津中医药大学 a. 中药制药工程学院, b. 现代中医药海河实验室, 天津 301617)
引用格式:
张晓阳, 应泽华, 郭抒博, 等. 固体分散体制备技术及质量控制研究进展[J]. 中国粉体技术, 2024, 30(2): 96-112.
ZHANG X Y, YING Z H, GUO S B et al. Research progress on the preparation techniques and quality control of solid dispersions[J]. China Powder Science and Technology, 2024, 30(2): 96-112.
DOI:10.13732 / j.issn.1008-5548.2024.02.009
收稿日期: 2023-10-14,修回日期:2023-11-15,上线日期:2024-01-16。
基金项目:国家重点研发计划项目,编号:2023YFC3504502;国家自然科学基金项目,编号:82074276;现代中医药海河实验室科技计划项目,编号:22HHZYSS00004。
第一作者简介:张晓阳 (1999—),男,硕士研究生,研究方向为药物新剂型与新技术。 E-mail: 1604424756@qq.com。
通信作者简介:李文龙 (1980—),男,副研究员,博士生导师,研究方向为中药质量控制技术。 E-mail: wshlwl@tjutcm.edu.cn。
摘要: 【目的】研究固体分散体 (solid dispersions, SDs) 制备技术和质量控制,分析 SDs 技术在药物制剂领域的发展现状,进一步推动 SDs 技术的推广应用。 【研究现状】总结熔融法、 溶剂法、 溶剂-熔融法、 机械分散法等固体分散体制备技术,其中熔融法又包括传统熔融法、 热熔挤出法、 熔融凝聚、 KinetiSol® Dispersing、 3D 打印技术等,溶剂法又包括喷雾干燥、 冷冻干燥、 流化床干燥、 超临界流体法、 共沉淀法和静电纺丝法等;概括粉体学性质、 溶出度、 药物和聚合物之间的相互作用、 固态等固体分散体质量控制因素。 【展望】SDs 制剂的成功开发取决于正确的制备技术和全面、 准确的质量控制。 认为药物和聚合物的物理化学性质对于选择合适制备策略的重要性不容忽视,关系到最终产品的热稳定性和物理稳定性;应用于 SDs 的制备的技术需要解决有毒溶剂的使用和药物可能存在的热降解风险;应该尝试开发高效和扩展性好的 SDs 技术。 提出应对 SDs 的粉体学性质进行准确、全面的考察,具有优异流动性和溶解性能的 SDs 将会极大程度推动 SDs 产品的商业化发展。
关键词: 固体分散体; 热熔挤出; 热熔挤出; 3D 打印; 喷雾干燥; 流化床; 质量控制;粉体学性质
Abstrac
Significance Drug solubilization is an essential step for orally administered medications to be absorbed systemically. Unfortunately,many drugs have poor water solubility, which severely limits their clinical applications. During drug Research & Development,various methods have been tried to overcome the poor water solubility of drug candidates, including salt formation, micritization,solid-lipid nanoparticles, nanosuspensions, and solid dispersions (SDs). Among them, SDs technology stands out for the advantages of simplicity, rapidity, and maturity, making it oone of the most successful strategies for improving the dissolution properties of insoluble drugs. SDs. Hence, SDs have emerged as a hot research topic in the past decade.
Progress So far, many techniques have emerged for the preparation of SDs, which are derived from the following methods, including the melting method, solvent method, melt-solvent method, and milling-based method. Among them, melt-based hot melt extrusion technology (HME) has gained prominence as a solvent-free, commercially scalable method for various drug delivery systems. Additionally, spray drying technology known for its extremely fast solvent removal efficiencies and good scale-up capabilities, has become the most popular solvent method. The fluidized bed drying method stands out for its ability to prepare SDs with both good flowability and dissolution properties. Furthermore, 3D printing technology offers the advantages in personalization and dosage form customization for pharmaceutical production. Despite the availability of these techniques, the selection of appropriate preparation techniques for SDs remains a challenge due to the complex and variable physicochemical properties of APIs and polymers as well as the lack of in-depth knowledge of the preparation techniques. Although many drug products based on SDs technology have been successfully marketed since 1989, the current quality control of SDs was still limited to the solid state, drug -polymer interactions, and dissolution, neglecting the crucial powder properties of SDs. Notably, SDs serve as formulation intermediates and need further processing into tablets, pills, capsules, and granules for convenient consumption. The powder properties of SDs play a pivotal role in ensuring the smoothness of downstream processing and the overall quality of the final products.
Conclusions and Prospects It was the prerequisite for the correct selection of preparation techniques to have a deeper understanding of the application scenarios, advantages, and limitations of various preparation techniques. Furthermore, the significance of the physicochemical properties of drugs and polymers in selecting suitable preparation strategies should not be overlooked. These properties are related to the thermal and physical stability of the final product and should be thoroughly reviewed in the future.Although many techniques have been applied to prepare SDs, several challenges persist. Many issues such as the use of toxic solvents and the possible risk of thermal degradation of the drug still need careful addressing. In addition, the current choice of commercially viable SDs preparation techniques is still very limited. Future research endeavors should try to develop simpler, more efficient, and scalable techniques for the SDs preparation. In terms of quality control of SDs, in addition to examining the solid state, drug-polymer interactions, and dissolution, researchers are required to conduct accurate and comprehensive assessments of the powder chemistry properties of SDs. The creation of SDs with both excellent flowability and dissolution properties undoubtedly holds the promise to significantly contribute to the successful commercialization of SDs products.
Keywords: solid dispersion; preparation techniques; hot melt extrusion; melt agglomeration; three-dimensional printing; spray
drying; quality control; powder properties
参考文献(References):
[1]MISHRA D K, DHOTE V, BHARGAVA A, et al. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications[J]. Drug Delivery and Translational Research, 2015, 5(6): 552-565.
[2]SKRDLA P J. Estimating the maximal solubility advantage of drug salts[J]. International Journal of Pharmaceutics, 2021,595: 120228.
[3]YAO S C, CHEN N Y, SUN X X, et al. Size-dependence of the skin penetration of andrographolide nanosuspensions: in vitro release-ex vivo permeationcorrelation and visualization of the delivery pathway[J]. International Journal of Pharmaceutics, 2023, 641: 123065.
[4]MIRCHANDANI Y, PATRAVALE V B. Solid lipid nanoparticles for hydrophilic drugs[J]. Journal of Controlled Release,2021, 335: 457-464.
[5]KANUJA H K, AWASTHI R, MEHTA M, et al. Nanosuspensions-an update on recent patents, methods of preparation, and evaluation parameters[J]. Recent Patents on Nanotechnology, 2021, 15(4): 351-366.
[6]ALSHETAILI A, ALMUTAIRY B K, ALSHEHRI S M, et al. Development and characterization of sustained-released donepezil hydrochloride solid dispersions using hot melt extrusion technology[J]. Pharmaceutics, 2021, 13(2): 213.
[7]BHUJBAL S V, MITRA B, JAIN U, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategie[J]. Acta Pharmaceutica Sinica B, 2021, 11(8): 2505-2536.
[8]VASCONCELOS T, MARQUES S, DAS NEVES J, et al. Amorphous solid dispersions: rational selection of a manufacturing process[J]. Advanced Drug Delivery Reviews, 2016, 100: 85-101.
[9]ZHANG J, GUO M S, LUO M Q, et al. Advances in the development of amorphous solid dispersions: the role of polymeric carriers[J]. Asian Journal of Pharmaceutical Sciences, 2023, 18(4): 100834.
[10]HOSSAIN S, KABEDEV A, PARROW A, et al. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning[ J]. European Journal of Pharmaceutics and Biopharmaceutics,2019, 137: 46-55.
[11]MA X Y, HUANG S Y, LOWINGER M B, et al. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: preparation and physical stability[ J]. International Journal of Pharmaceutics,2019, 561: 324-334.
[12]SKRDLA P J, FLOYD P D, DELL’ORCO P C. Predicted amorphous solubility and dissolution rate advantages following moisture sorption: case studies of indomethacin and felodipine[ J]. International Journal of Pharmaceutics, 2019, 555:100-108.
[13]潘虹, 李飞, 柴硕, 等. 甘草次酸固体分散体 3 种制备工艺比较[J]. 中国药业, 2022, 31(18): 57-61.
PAN H, LI F, CHAI S, et al. Comparison of three preparation technologies of glycyrrhetinic acid solid dispersion[ J].China Pharmaceuticals, 2022, 31(18): 57-61.
[14]CHIVATE A, GARKAL A, DHAS N, et al. Hot-melt extrusion: an emerging technique for solubility enhancement of poorly water-soluble drugs[J]. PDA Journal of Pharmaceutical Science and Technology, 2021, 75(4): 357-373.
[ 15]TRAN P H L, LEE B J, TRAN T T D. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164: 13-19.
[16]ALZAHRANI A, NYVANANDI D, MANDATI P, et al. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: theoretical prediction to practical implementation[J]. International Journal of Pharmaceutics,2022, 624: 121951.
[17]MATADH A V, ECHANUR A, SURESH S, et al. Can continuous manufacturing of topical semisolids by hot melt extrusion soon be a reality? [J]. Molecular Pharmaceutics, 2023, 20(8): 3779-3790.
[18]REPKA M A, BANDARI S, KALLAKUNTA V R, et al. Melt extrusion with poorly soluble drugs-an integrated review[J].International Journal of Pharmaceutics, 2018, 535(1 / 2): 68-85.
[19]LI J L, LI C H, ZHANG H, et al. Preparation of azithromycin amorphous solid dispersion by hot-melt extrusion: an advantageous technology with taste masking and solubilization effects[J]. Polymers, 2022, 14(3): 495.
[20]SALAVE S, PRAYAG K, RANA D, et al. Recent progress in hot melt extrusion technology in pharmaceutical dosage form design[J]. Recent Advances in Drug Delivery and Formulation, 2022, 16(3): 170-191.
[21]WESHOLOWSKI J, PRILL S, BERGHAUS A, et al. Inline UV/ Vis spectroscopy as PAT tool for hot-melt extrusion[J].Drug Delivery and Translational Research, 2018, 8(6): 1595-1603.
[22]MUNIR N, NUGENT M, WHITAKER D, et al. Machine learning for process monitoring and control of hot-melt extrusion:current state of the art and future directions[J]. Pharmaceutics, 2021, 13(9): 1432.
[23]VO C L N, PARK C, LEE B J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3): 799-813.
[24]SEO A, HOLM P, KRISTENSEN H G, et al. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer[J]. International Journal of Pharmaceutics, 2003, 259(1 / 2): 161-171.
[25]ALEKSIC′I, -DURIŠ J, ILIC′I, et al. In silico modeling of in situ fluidized bed melt granulation[J]. International Journal of Pharmaceutics, 2014, 466(1 / 2): 21-30.
[26]孙嘉慧, 唐海, 杨美青, 等. 固体分散体技术提高难溶性药物溶解度研究进展[ J]. 化工与医药工程, 2021,42(5): 38-43.SUN J H, TANG H, YANG M Q, et al. Research progress in improving solubility of insoluble drugs by solid dispersion technique[J]. Chemical and Pharmaceutical Engineering, 2021,42(5):38-43.
[27]JERMAIN S V, MILLER D, SPANGENBERG A, et al. Homogeneity of amorphous solid dispersions: an example with KinetiSol®[J]. Drug Development and Industrial Pharmacy, 2019, 45(5): 724-735.
[28]ELLENBERGER D J, MILLER D A, WILLIAMS R O. Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: a review[J]. AAPS PharmSciTech, 2018, 19(5): 1933-1956.
[29]DINUNZIO J C, BROUGH C, MILLER D A, et al. Fusion processing of itraconazole solid dispersions by KinetiSol® dispersing: a comparative study to hot melt extrusion[J]. Journal of Pharmaceutical Sciences, 2010, 99(3): 1239-1253.
[30]BIKIARIS D N. Solid dispersions: Part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs[J]. Expert Opinion on Drug Delivery, 2011, 8(12): 1663-1680.
[31]DUMPA N, BUTREDDY A, WANG H H, et al. 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling[J]. International Journal of Pharmaceutics, 2021, 600: 120501.
[32]DESHKAR S, RATHI M, ZAMBAD S, et al. Hot melt extrusion and its application in 3D printing of pharmaceutical[J].Current Drug Delivery, 2021, 18(4): 387-407.
[33]KHALID G M, BILLA N. Solid dispersion formulations by FDM 3D printing: a review[J]. Pharmaceutics, 2022, 14(4):690.
[34]BANDARI S, NYAVANANDI D, DUMPA N, et al. Coupling hot melt extrusion and fused deposition modeling: critical properties for successful performance[J]. Advanced Drug Delivery Reviews, 2021, 172: 52-63.
[35]PASSERINI N, CALOGERÀ G, ALBERTINI B, et al. Melt granulation of pharmaceutical powders: a comparison of highshear mixer and fluidised bed processes[J]. International Journal of Pharmaceutics, 2010, 391(1 / 2): 177-186.
[36]SÓTI P L, BOCZ K, PATAKI H, et al. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions[J]. International Journal of Pharmaceutics, 2015, 494(1): 23-30.
[37]刘诗苑. 诺氟沙星固体分散体的形成机制及性质研究[D]. 天津: 天津大学, 2020.LIU S Y. Study on the formation mechanism and properties of norfloxacin solid dispersion[D]. Tianjin: Tianjin University,2020.
[38]亢思莹, 顾宙辉, 黄鑫. 喷雾干燥技术在固体分散体制备中的应用[J]. 药学与临床研究, 2022, 30(2): 159-161.KANG S Y, GU Z H, HUANG X. Application of spray dry technology in preparation of solid dispersion[J]. Pharmaceutical and Clinical Research, 2022, 30(2): 159-161.
[39]HENGSAWAS SURASARANG S, KEEN J M, HUANG S Y, et al. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole[J]. Drug Development and Industrial Pharmacy, 2017, 43(5): 797-811.
[40]SAWICKI E, BEIJNEN J H, SCHELLENS J H M, et al. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel[J]. International Journal of Pharmaceutics, 2016,511(2): 765-773.
[41]BHARDWAJ V, TRASI N S, ZEMLYANOV D Y, et al. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion[J]. International Journal of Pharmaceutics, 2018, 540(1 / 2): 106-119.
[42]BHUJBAL S V, ZEMLYANOV D Y, CAVALLARO A, et al. Qualitative and quantitative characterization of composition heterogeneity on the surface of spray dried amorphous solid dispersion particles by an advanced surface analysis platform with high surface sensitivity and superior spatial resolution[J]. Molecular Pharmaceutics, 2018, 15(5): 2045-2053.
[43]VALKAMA E, HALUSKA O, LEHTO V P, et al. Production and stability of amorphous solid dispersions produced by a freeze-drying method from DMSO[J]. International Journal of Pharmaceutics, 2021, 606: 120902.
[44]JIN S, LEE C H, LIM D Y, et al. Improved hygroscopicity and bioavailability of solid dispersion of red ginseng extract with silicon dioxide[J]. Pharmaceutics, 2021, 13(7): 1022.
[45]胡献跃, 胡亚男, 黄东纬, 等. 冷冻干燥法制备甲苯磺酸拉帕替尼固体分散体及其大鼠药动学评价[ J]. 中国现代应用药学, 2020, 37(3): 299-303.HU X Y, HU Y N, HUANG D W, et al. Preparation of lapatinib ditosylate solid dispersions by freeze-drying technology and its pharmacokinetic evaluation in rats[J]. Chinese Journal of Modern Applied Pharmacy, 2020, 37(3): 299-303.
[46]VAN DROOGE D J, HINRICHS W L J, DICKHOFF B H J, et al. Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation[J]. European Journal of Pharmaceutical Sciences, 2005, 26(2): 231-240.
[ 47]KIM J S, UD DIN F, CHOI Y J, et al. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: a prospective alternative to conventional solid dispersion[J]. International Journal of Pharmaceutics, 2022, 628: 122286.
[48]SHANMUGAM S, IM H T, SOHN Y T, et al. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation[J]. Drug Development and Industrial Pharmacy, 2015, 41(11): 1864-1876.
[49]KWON H J, HEO E J, KIM Y H, et al. Development and evaluation of poorly water-soluble celecoxib as solid dispersions containing nonionic surfactants using fluidized-bed granulation[J]. Pharmaceutics, 2019, 11(3): 136.
[50]LI J, MIAO X Q, CHEN T K, et al. Preparation and characterization of pelletized solid dispersion of resveratrol with mesoporous silica microparticles to improve dissolution by fluid-bed coating techniques [ J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(4): 528-535.
[51]LI J, LIU P, LIU J P, et al. Novel Tanshinone II A ternary solid dispersion pellets prepared by a single-step technique: in vitro and in vivo evaluation[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80(2): 426-432.
[52]WU S J, ZENG Q, ZHANG Z Y, et al. Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed[J]. Journal of Drug Delivery Science and Technology, 2022, 78: 103956.
[53]BOEL E, VAN DEN MOOTER G. The impact of applying an additional polymer coating on high drug-loaded amorphous solid dispersions layered onto pellets[J]. International Journal of Pharmaceutics, 2023, 630: 122455.
[54]NIKOWITZ K, PINTYE-HÓDI K, REGDON G. Study of the recrystallization in coated pellets: effect of coating on API crystallinity[J]. European Journal of Pharmaceutical Sciences, 2013, 48(3): 563-571.
[55]DEREYMAKER A, PELGRIMS J, ENGELEN F, et al. Controlling the release of indomethacin from glass solutions layered with a rate controlling membrane using fluid-bed processing: part 2: the influence of formulation parameters on drug release[J]. Molecular Pharmaceutics, 2017, 14(4): 974-983.
[56]TRAN P, PARK J S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs[J]. International Journal of Pharmaceutics, 2021, 610: 121247.
[57]VAN NIJLEN T, BRENNAN K, VAN DEN MOOTER G, et al. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions[ J]. International Journal of Pharmaceutics, 2003, 254(2): 173-181.
[58]BRION M, JASPART S, PERRONE L, et al. The supercritical micronization of solid dispersions by particles from gas saturated solutions using experimental design[J]. The Journal of Supercritical Fluids, 2009, 51(1): 50-56.
[59]WU K, LI J, WANG W, et al. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent[ J]. Journal of Pharmaceutical Sciences, 2009, 98(7):2422-2431.
[60]LYONS J G, HALLINAN M, KENNEDY J E, et al. Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process[J]. International Journal of Pharmaceutics, 2007, 329(1 / 2): 62-71.
[61]COSTA C, CASIMIRO T, CORVO M L, et al. Solid dosage forms of biopharmaceuticals in drug delivery systems usingsustainable strategies[J]. Molecules, 2021, 26(24): 7653.
[62]张维, 张志云, 张志丽, 等. 超临界流体技术制备固体分散体的研究进展[J]. 安徽医药, 2013, 17(6): 903-905.
ZHANG W, ZHANG Z Y, ZHANG Z L, et al. Progress in preparation of solid dispersions using supercritical fluid process[J]. Anhui Medical and Pharmaceutical Journal, 2013, 17(6): 903-905.
[63]KESHAVARZ A, KARIMI-SABET J, FATTAHI A, et al. Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS)[J]. The Journal of Supercritical Fluids, 2012, 63: 169-179.
[64]ESSEL J T, IHNEN A C, CARTER J D. Production of naproxen nanoparticle colloidal suspensions for inkjet printing applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2726-2731.
[65]PATHAK P, MEZIANI M J, DESAI T R, et al. Nanosizing drug particles in supercritical fluid processing[J]. Journal of the American Chemical Society, 2004, 126(35): 10842-10843.
[ 66]LI S M, LIU Y, LIU T, et al. Development and in-vivo assessment of the bioavailability of oridonin solid dispersions by the gas anti-solvent technique[J]. International Journal of Pharmaceutics, 2011, 411(1 / 2): 172-177.
[67]ADELI E. The use of supercritical anti-solvent (SAS) technique for preparation of irbesartan-pluronic® F-127 nanoparticles to improve the drug dissolution[J]. Powder Technology, 2016, 298: 65-72.
[68]BIN AHN J, KIM D H, LEE S E, et al. Improvement of the dissolution rate and bioavailability of fenofibrate by the supercritical anti-solvent process[J]. International Journal of Pharmaceutics, 2019, 564: 263-272.
[69]LEE S, NAM K, KIM M S, et al. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability[J]. Archives of Pharmacal Research, 2005,28(7): 866-874.
[70]YANG G, ZHAO Y P, FENG N P, et al. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids[J]. Asian Journal of Pharmaceutical Sciences, 2015, 10(3): 194-202.
[71]JUN S W, KIM M S, JO G H, et al. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids[J]. The Journal of Pharmacy and Pharmacology, 2005, 57(12): 1529-1537.
[72]MORIKAWA C, UEDA K, OMORI M, et al. Formation mechanism of amorphous drug nanoparticles using the antisolvent precipitation method elucidated by varying the preparation temperature[ J]. International Journal of Pharmaceutics, 2021,610: 121210.
[73]YU D G, YANG J M, BRANFORD-WHITE C, et al. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers[J]. International Journal of Pharmaceutics, 2010, 400(1 / 2): 158-164.
[74]YU D G, BRANFORD-WHITE C, WHITE K, et al. Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen[J]. AAPS PharmSciTech, 2010, 11(2): 809-817.
[75]ZHANG Q, PU Y Q, WANG B, et al. Characterization, molecular docking, and in vitro dissolution studies of solid dispersions of 20(S)-protopanaxadiol[J]. Molecules, 2017, 22(2): 274.
[76]BOLOURCHIAN N, SHAFIEE PANAH M. The effect of surfactant type and concentration on physicochemical properties of carvedilol solid dispersions prepared by wet milling method[ J]. Iranian Journal of Pharmaceutical Research IJPR, 2022,21(1): e126913.
[77]MESALLATI H, UMERSKA A, PALUCH K J, et al. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin[J]. Molecular Pharmaceutics, 2017, 14(7): 2209-2223.
[78]PUGLIESE A, TOBYN M, HAWARDEN L E, et al. New development in understanding drug-polymer interactions in pharmaceutical amorphous solid dispersions from solid-state nuclear magnetic resonance[ J]. Molecular Pharmaceutics, 2022,19(11): 3685-3699.
[79]PATIL H, TIWARI R V, REPKA M A. Hot-melt extrusion: from theory to application in pharmaceutical formulation[J].AAPS PharmSciTech, 2016, 17(1): 20-42.
[80]SAERENS L, DIERICKX L, LENAIN B, et al. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process [ J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(1): 158-163.
[81]马骏威, 安娜. 热熔挤出法固体分散体质量评价的考虑[J]. 中国药学杂志, 2020, 55(21): 1819-1823.
MA J W, AN N. Consideration for quality evaluation of solid dispersions prepared by hot melt extrusion [ J]. Chinese Pharmaceutical Journal, 2020, 55(21): 1819-1823.
[82]LI Y C, PANG H S, GUO Z F, et al. Interactions between drugs and polymers influencing hot melt extrusion[ J]. The Journal of Pharmacy and Pharmacology, 2014, 66(2): 148-166.
[83] PANZADE P, SHENDARKAR G, KULKARNI D, et al. Solid state characterization and dissolution enhancement of nevirapine cocrystals[J]. Advanced Pharmaceutical Bulletin, 2021, 11(4): 772-776.
[84]SAERENS L, VERVAET C, REMON J P, et al. Visualization and process understanding of material behavior in the extrusion barrel during a hot-melt extrusion process using Raman spectroscopy[J]. Analytical Chemistry, 2013, 85(11): 5420-5429.
[85]SAERENS L, GHANAM D, RAEMDONCK C, et al. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87(3): 606-615.
[86]BUDIMAN A, NURANI N V, LAELASARI E, et al. Effect of drug-polymer interaction in amorphous solid dispersion on the physical stability and dissolution of drugs: the case of α-mangostin[J]. Polymers, 2023, 15(14): 3034.
[87]SARPAL K, DELANEY S, ZHANG G G Z, et al. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug-polymer interactions[J]. Molecular Pharmaceutics, 2019, 16(12): 4836-4851.
[88]WALDEN D M, BUNDEY Y, JAGARAPU A, et al. Molecular simulation and statistical learning methods toward predicting drug-polymer amorphous solid dispersion miscibility, stability, and formulation design[J]. Molecules, 2021, 26(1):182.
[89]VAN RENTERGHEM J, KUMAR A, VERVAET C, et al. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy[ J]. International Journal of Pharmaceutics, 2017, 517(1 / 2): 119-127.
[90]ALMEIDA A, SAERENS L, DE BEER T, et al. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations[J]. International Journal of Pharmaceutics, 2012, 439(1 / 2): 223-229.
[91]吴思俊, 张晓阳, 郭抒博, 等. 中药丸剂生产过程控制及质量表征技术研究进展[ J]. 分析测试学报, 2023,42(8): 1012-1025.
WU S J, ZHANG X Y, GUO S B, et al. Research progress on production process control technology and quality characterization technology of traditional Chinese medicine pills[J]. Journal of Instrumental Analysis, 2023, 42(8): 1012-1025.
[92]MCFALL H, SARABU S, SHANKAR V, et al. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hotmelt extrusion technology: in vitro and in vivo studies[J]. International Journal of Pharmaceutics, 2019, 554: 302-311.
[93]YUN F, KANG A, SHAN J J, et al. Preparation of osthole-polymer solid dispersions by hot-melt extrusion for dissolution and bioavailability enhancement[J]. International Journal of Pharmaceutics, 2014, 465(1 / 2): 436-443.
[94]MEGARRY A J, SWAINSON S M E, ROBERTS R J, et al. A big data approach to pharmaceutical flow properties[ J].International Journal of Pharmaceutics, 2019, 555: 337-345.
[95]YU Y T, ZHAO L J, LIN X, et al. Research on the powder classification and the key parameters affecting tablet qualities for direct compaction based on powder functional properties[J]. Advanced Powder Technology, 2021, 32(2): 565-581.
[96]马英杰, 逄秀娟, 王思玲, 等. 辅料对尼莫地平固体分散体粉体学性质的影响[ J]. 沈阳药科大学学报, 2009,26(4): 254-259.MA Y J, PANG X J, WANG S L, et al. Effects of excipients on powder technology properties of nimodipine dispersion powders[J]. Journal of Shenyang Pharmaceutical University, 2009, 26(4): 254-259.
[97]SARRAGUÇA M C, CRUZ A V, AMARAL H R, et al. Comparison of different chemometric and analytical methods for the prediction of particle size distribution in pharmaceutical powders [ J]. Analytical and Bioanalytical Chemistry, 2011,399(6): 2137-2147.
[98]YOUNG Z, QU M L, CODAY M M, et al. Effects of particle size distribution with efficient packing on powder flowability and selective laser melting process[J]. Materials, 2022, 15(3): 705.
[99]PAULI V, ROGGO Y, KLEINEBUDDE P, et al. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019,141: 90-99.