ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第2期
<返回第2期

碱式碳酸镁焙烧法制备多孔氧化镁晶体

Preparation of porous MgO crystals with hydromagnesite roasting method

邓 凤1, 王余莲1, 张一帆1, 李纪勋1, 关 蕊1, 李克卿1, 苏峻樟1,孙浩然1, 韩会丽1, 袁志刚1, 苏德生2,3, 池 云4

(1. 沈阳理工大学 材料科学与工程学院, 辽宁 沈阳 110158; 2. 辽宁省超高功率石墨电极材料专业技术创新中心,辽宁 丹东 118100; 3. 辽宁丹炭科技集团有限公司, 辽宁 丹东 118100; 4. 中共辽宁省委党校, 辽宁 沈阳 110004)


引用格式:

邓凤, 王余莲, 张一帆, 等. 碱式碳酸镁焙烧法制备多孔氧化镁晶体[J]. 中国粉体技术, 2024, 30(2): 138-150.

DENG F, WANG Y L, ZHANG Y F, et al. Prepared of porous magnesium oxide crystal with hydromagnesite method[J].China Powder Science and Technology, 2024, 30(2): 138-150.

DOI:10.13732 / j.issn.1008-5548.2024.02.012

收稿日期: 2023-10-30,修回日期:2023-12-22,上线日期:2024-01-18。

基金项目:国家自然科学基金项目,编号:52374271;沈阳市科技局项目,编号:22-322-3-03;辽宁省重点研发计划项目,编号:2022JH2 /101300111;沈阳市中青年科技创新人才支持计划项目,编号:RC220104;辽宁省教育厅项目,编号:LJKMZ20220588;辽宁省大学生创新创业训练项目,编号:S202210144002。

第一作者简介:邓凤(2000—),女,硕士生,研究方向为非金属功能材料。 E-mail: 1096280733@qq.com。

通信作者简介:王余莲(1986—),女,教授,博士,辽宁省百千万人才工程千人层次,硕士生导师,研究方向为矿物材料制备及应用。E-mail: ylwang0908@163.com。


摘要: 【目的】 实现多孔 MgO 晶体的可控制备。 【方法】 以菱镁矿为镁源, 采用水化碳化 - 低温水溶液法, 热解Mg(HCO3 )2溶液合成平均直径为 10. 0 μm、 平均长度为 50. 0 μm 的多孔棒状碱式碳酸镁(4MgCO3·Mg(OH)2·4H2O);通过焙烧法制备多孔 MgO 晶体,分别探讨焙烧温度、时间对前驱体 4MgCO3·Mg(OH)2·4H2O 分解率、 MgO 物相组成和形貌的影响,探究 4MgCO3·Mg(OH)2·4H2O 热分解机制。 【结果】在焙烧温度为 700 ℃ 、 时间为 3. 0 h 时,制得平均直径为 20. 0 μm、 平均长度为 50. 0 μm、 比表面积为 76. 12 m2/ g 的介孔棒状 MgO 晶体;在 4MgCO3·Mg(OH)2·4H2O 分解过程中,随着温度升高,结晶水失去,—OH 的分离和 C—O 键断裂,4MgCO3·Mg(OH)2·4H2O 结构彻底崩塌,生成的 MgO纳米片在高温下自组装成 2 种形貌的多孔棒状 MgO,一种是纳米片全部覆盖的多孔棒,另一种是一端由纳米片覆盖,另一端光滑的多孔棒,此过程中晶格常数减小,晶粒直径由 51. 92 nm 减小为 11. 28 nm。

关键词: 菱镁矿; 碱式碳酸镁; 氧化镁; 生长机制

Abstract

Objective To improve the efficient utilization of mineral resources and achieve the controlled preparation of porous magnesium oxide (MgO) crystals.

Methods In this paper, magnesite was used as raw material and calcined at 750 ℃ for 3. 0 h to produce light burned magnesium powder, and then the light burned magnesium powder was sifted to obtain powder with a particle size less than 75 μm. The powder was mixed with deionized water in a mass ratio of 1∶ 40, and heavy magnesium water was obtained by hydration carbonization method. The porous rod-like hydromagnesite ( 4MgCO3·Mg(OH)2·4H2O) with an average length of 50 μm and an average diameter of 10. 0 μm were successfully prepared by direct pyrolysis of heavy magnesium water using low-temperature aqueous solution without the incorporation of additional additives. Then using hydromagnesite as precursor, porous magnesium oxide crystals were prepared by direct roasting method. The effect of calcination time and temperature on the decomposition rate of the precursor hydromagnesite, as well as the resulting phase composition and microstructure of the magnesium oxide final product,was discussed. At the same time, the thermal decomposition mechanism of the precursor hydromagnesite during its transformation into magnesium oxide crystals was investigated.

Results and Discussion The results show that: neither the duration nor temperature of roasting has significant effects on the decomposition rate of precursor hydromagnesite, nor did they impact the phase composition and micro-morphology of the magnesium oxide crystals. However, two morphologies appeared roasted at of 700 ℃ for 3. 0 h. The obtained magnesium oxide features mainly porous rod-like structure with an average diameter of 20. 0 μm. A minor fraction comprises rod-like crystal, distinguished by a smooth surface at one end and a porous structure covering the other end. The mean diameter of the part with a smooth surface is 10. 0 μm, while the mean diameter of the part covered by a porous structure is 20. 0 μm. The average length of the rod-like crystals with different morphologies at both ends is 50. 0 μm. Sustaining calcination temperature while extending the calcination time to 4. 0 h resulted in a product presenting the same morphology as that observed after 3. 0 h of calcination. The average diameter of the porous part and the average diameter of the smooth part was still 20. 0 μm and 10. 0 μm, respectively. However, the average length of the rod is reduced to 40. 0 μm. Under such conditions of the optimal roasting temperature of 700 ℃ and the roasting time of 3. 0 h, the decomposition rate of the precursor hydromagnesite reaches a maximum of 99. 98 %. The pore size of the obtained porous rod-like magnesium oxide crystals is mainly distributed in the range of 2 ~ 15 nm, with mesoporous properties.The specific surface area is 76. 12 cm2/ g, and the total pore volume is 0. 21 cm3/ g. Based on the thermal analysis data of the precursor hydromagnesite and the simulation of the crystal structure of the precursor hydromagnesite, it can be concluded that the main structure of hydromagnesite is composed of the [ MgO6 ] octahedron. Because of the bivalent nature of Mg2+ions, the escaped water molecules originate from two distinct coordination environments. One arises from the escape of crystal water, and the other results from the break of hydroxyl bonds. The thermal decomposition reaction of hydromagnesite is characterized as an endothermic reaction and divided into two stages. In these two stages, the molecular structure of hydromagnesite will be adjusted rapidly. When all water molecules escape, the product exists in the form of amorphous magnesium carbonate. The resulting CO2 escapes, magnesium oxide forms, and the hydromagnesite structure collapses. As the temperature gradually rises, the generated magnesium oxide nanosheets begin to self-assemble and generate porous rod-like crystals covered by nanosheets. Due to the low concentration of magnesium oxide nanosheets on the surface of some rod-like magnesium oxide, the surface of the region is smooth and there is no nanosheet coverage. Based on the XRD data of the precursor hydromagnesite and magnesium oxide crystals, the cell data of the two crystals were obtained by using Jade software, and the crystal plane spacing of the two crystals was calculated by Scherer formula, so as to obtain the average grain diameter of the two crystals. It is found that during the transformation from hydromagnesite to magnesium oxide, the lattice constant and cell volume of the crystal decrease, signifying a more compact crystal structure in magnesium oxides. Additionally,the grain diameter decreases from 51. 92 to 11. 28 nm. The decrease of grain diameter, with the increase of specific surface area and the increase of active sites, imparts greater surface energy to magnesium oxide crystals. This enhanced surface energy facilitates the adsorption of nearby atoms and molecules onto magnesium oxide crystals, thus increasing the diameter of magnesium oxide crystals.

Conclusion Using magnesite as the initial raw material and without any additional additives, calcination hydration carbonation direct pyrolysis of Mg(HCO3)2 solution is used to obtain an average diameter of 10. 0 μm. The average length is 50 μm porous rod-shaped basic magnesium carbonate was used as a precursor. At a calcination temperature of 700 ℃ and a calcination time of 3. 0 h, a maximum decomposition rate of 99. 98 % is obtained, and a mesoporous rod-shaped magnesium oxide with a specific surface area of 76. 12 m2/ g is obtained. At the same time, the pyrolysis mechanism of basic magnesium carbonate is analyzed as follows: the loss of crystalline water, separation of —OH groups, and breakage of C—O bonds collectively cause the complete collapse of the basic magnesium carbonate structure. The newly generated magnesium oxide nanosheets undergo self-assembly at high temperatures, leading to a decrease in the lattice constant and the grain diameter from 51. 92 to 11. 28 nm. Using this process to prepare porous magnesium oxide crystals, raw materials offers advantages such as readily available, cost-effective raw materials, environmental and human-friendly characteristics. This approachis expected to increase the added value of magnesite.however, how to further improve the specific surface area of porous magnesium oxide crystals deserves further consideration and research.

Keywords: magnesite; hydromagnesite; magnesium oxide; growth mechanism


参考文献(References):

[1]程文婷, 薄秋芳, 程芳琴, 等. 聚乙二醇辅助合成氧化镁及其处理含铅溶液的性能[ J]. 中国科学: 化学, 2013,43(11): 1490-1496.

CHENG W T, BO Q F, CHENG F Q, et al. Synthesis of magnesium oxide assisted by PEG-10000 and adsorption capacity for lead solution[J]. Scientia Sinica Chimica, 2013, 43(11): 1490-1496.

[2]田键, 刘洋, 胡攀, 等. 氧化镁在环境污染治理中应用研究进展[ J]. 湖北大学学报(自然科学版), 2021, 43(1):74-79.

TIAN J, LIU Y, HU P, et al. Research progress of application of magnesium oxide in environmental pollution control[ J].Journal of Hubei University (Natural Science), 2021, 43(1): 74-79.

[3]闫平科, 王万起, 马正先. 超细氧化镁粉体的制备新方法及应用[J]. 中国非金属矿工业导刊, 2009(6): 19-21.

YAN P K, WANG W Q, MA Z X. Research on the new preparing methods and application of micropowder magnesium oxide[J]. China Non-metallic Minerals Industry Herald, 2009(6): 19-21.

[4]易师甜. 纳米氧化镁的制备及抗菌性能研究[D]. 武汉: 华中科技大学, 2009.

YI S T. Preparation of nano-magnesium oxide and research on its antibacterial ability[D]. Wuhan: Huazhong University of Science and Technology, 2009.

[5]赵嘉莘. 多孔 MgO 绒球的制备及其在热电池中的应用研究[D]. 绵阳: 西南科技大学, 2021.

ZHAO J S. Study on the preparation of porous MgO pompons and its application in thermal batteries [ D]. Mianyang:Southwest University of Science and Technology, 2021.

[6]ZHAO J X, LIU J S, LI H Q, et al. Porous MgO pompons as a binder for the molten electrolyte applied in thermal batteries[J]. Ionics, 2021, 27(3): 1271-1278.

[7]李录. 多孔氧化镁/ 氢氧化镁的可控制备及重金属吸附性能研究[D]. 福州: 福建师范大学, 2021.

LI L. Controlled preparation and heavy metal adsorption properties of porous magnesium oxide / magnesium hydroxide[D].Fuzhou: Fujian Normal University, 2021.

[8] BORGOHAIN X, BORUAH A, SARMA G K, et al. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water[J]. Journal of Molecular Liquids, 2020, 305: 112799.

[9]AHMED S, GUO Y W, LI D Q, et al. Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange[J]. Environmental Science and Pollution Research, 2018, 25(25): 24907-24916.

[10]康宁. 多孔球状活性 MgO 制备及除氟效能研究[D]. 沈阳: 沈阳建筑大学, 2022.

KANG N. Research on prepatation and defluorination of porous spherical activated MgO[D]. Shenyang: Shenyang Jianzhu University, 2022.

[11]何欣芮. 盐湖水氯镁石构筑不同形貌 MgO 及其染料吸附性能研究[D]. 西宁: 青海师范大学, 2023.

HE X R. Construction different morphologies of MgO from salt lake bischofite and study of dye adsorption properties[D].Xining: Qinghai Normal University, 2023.

[12]夏勇亮. 轻烧白云石粉料制备氧化镁研究[D]. 北京: 北京化工大学, 2013.

XIA Y L. Research of megnesia preparation from light burning dolomite powder[D]. Beijing: Beijing University of Chemical Technology, 2013.

[13]仇龙, 李会杰, 黄娜娜, 等. 轻烧粉制备介孔氧化镁及其吸附性能的研究[J]. 沈阳化工大学学报, 2022, 36(3):215-220.

QIU L, LI H J, HUANG N N, et al. Preparation and adsorption properties of mesoporous magnesium oxide from light burned powder[J]. Journal of Shenyang University of Chemical Technology, 2022, 36(3): 215-220.

[14]刘珈伊, 王余莲, 时天骄, 等. 菱镁矿气泡模板法制备三水碳酸镁晶体及其生长机理[J]. 矿产保护与利用, 2022,42(2): 114-119.

LIU J Y, WANG Y L, SHI T J, et al. Preparation and growth mechanism of nesquehonite crystal crystals by bubble template method with magnesite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 114-119.

[15]王余莲, 印万忠, 李昂, 等. 热分解法制备三水碳酸镁晶须及其结晶动力学研究[ J]. 矿产保护与利用, 2018(6):107-113.

WANG Y L, YIN W Z, LI A, et al. Preparation and crystallization kinetics of nesquehonite whiskers with thermal decomposition method[J]. Conservation and Utilization of Mineral Resources, 2018(6): 107-113.

[16]王余莲, 印万忠, 张夏翔, 等. 三水碳酸镁法制备碱式碳酸镁过程研究[J]. 矿产保护与利用, 2017(4): 81-86.

WANG Y L, YIN W Z, ZHANG X X, et al. Preparation of hydromagnesite using nesquehonite method[J]. Conservation and Utilization of Mineral Resources, 2017(4): 81-86.

[17]刘珈伊, 王余莲, 时天骄, 等. 无水乙醇辅助低温直接法制备碱式碳酸镁晶体[J]. 中国粉体技术, 2021, 27(1):41-49.

LIU J Y, WANG Y L, SHI T J, et al. Preparation of basic magnesium carbonate crystals with low temperature direct method by anhydrous ethanol-assisted process[J]. China Powder Science and Technology, 2021, 27(1): 41-49.

[ 18]李希艳, 张虹, 刘雪景, 等. 抑制性气氛中菱镁矿分解特性与动力学研究[J]. 无机盐工业, 2023, 55(10): 50-55.

LI X Y, ZHANG H, LIU X J, et al. Research on the decomposition characteristics and kinetics of magnesite in an inhibitory atmosphere[J]. Inorganic Chemicals Industry, 2023, 55(10): 50-55.

[19]戴卫东, 王寿武, 卢伯南. 碱式氯化镁烧结法制备氧化镁晶须的工艺研究[J]. 盐业与化工, 2009, 38(4): 19-22.

DAI W D, WANG S W, LU B N. Studies on the technology of preparing magnesium oxide whiskers wih basic magnesium chloride by sintering method[J]. Journal of Salt and Chemical Industry, 2009, 38(4): 19-22.

[20]孙赫男, 关岩, 毕万利, 等. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[ J]. 材料导报, 2022,36(19): 91-96.

SUN H N, GUAN Y, BI W L, et al. The influence of crystal characteristics of sintered magnesium oxide powder on the mechanical properties of magnesium phosphate cement[J]. Materials Reports, 2022, 36(19): 91-96.