ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第2期
<返回第2期

丛枝菌根真菌在提高植物抗逆性与土壤改良中的作用与机制研究进展

Role and Mechanism of Arbuscular Mycorrhizal Fungi in Enhancing Plant Stress Resistance and Soil Improvement:areview

杨 沐1a,2,郭 寰1a,2,段国珍1b,2,王占林1b,2,樊光辉1b,2,李建领1b,2

(1. 青海大学 a. 农牧学院, b. 农林科学院,青海 西宁 810016;2. 青海高原林木遗传育种实验室,青海 西宁 810016)


引用格式:

杨沐,郭寰,段国珍,等 . 丛枝菌根真菌在提高植物抗逆性与土壤改良中的作用与机制研究进展[J]. 中国粉体技术,2024,30(2):164-172.

YANG M,GUO H, DUAN G Z, et al. Role and Mechanism of Arbuscular Mycorrhizal Fungi in Enhancing Plant Stress Resistance and Soil Improvement:areview[J]. China Powder Science and Technology,2024,30(2):164−172.

DOI:10.13732/j.issn.1008-5548.2024.02.014

收稿日期:2023-12-04,修回日期:2024-01-14,上线日期:2024-02-27。

基金项目:国家自然科学基金项目,编号:41761055;青海省科技厅应用基础研究青年项目,编号:2021-ZJ-962Q。

第一作者简介:杨沐(1999—),男,硕士生,研究方向为林木遗传育种、植物-微生物互作。E-mail:19847372115@163. com。

通信作者简介:

段国珍(1990—),女,助理研究员,博士,2020年青海昆仑英才·高端创新创业人才,硕士生导师,研究方向为林木遗传育种、植物-微生物互作。E-mail:18848110959@163. com;

王占林(1966—),男,研究员,国务院特殊津贴专家,硕士生导师,研究方向为高原森林土壤及育种等。E-mail: 1735105720@qq.com。


摘要:

【目的】 为深入了解植物抗逆性及土壤生态修复的机制,开展丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在分子水平上的研究,以实现对植物生长发育及抗逆性和土壤生态改良的精准调控。【研究现状】综述 AMF对宿主植物抗逆性和土壤生态改良的影响,概括AMF抵御生物胁迫和非生物胁迫的作用机制,总结AMF在非侵染性病害、土壤生态结构改良等方面的作用机制和实际应用潜力。【展望】提出AMF在植物抗逆性提升与土壤生态结构改良方面的作用是生态学与农学研究的热点,继续研究AMF如何在分子层面影响植物的应激反应、免疫机制、与土壤微生物相互作用等方面的具体机制;AMF在不同植物种类、土壤类型和环境条件下的适用性也需要深入研究。未来的研究应更加侧重AMF与植物互作的分子机制,特别是AMF在基因调控和信号传导方面的作用;探索AMF在干旱、高盐、重金属污染等极端环境下的功能多样性和适应性;AMF作为一种新兴的有机菌肥,将有助于推动农业的可持续发展,为应对全球农业面临的挑战提供新的解决方案。

关键词:丛枝菌根真菌;抗逆性;土壤改良;土壤团粒

Abstract

Significance Arbuscular mycorrhizal fungi (AMF) represent an ancient group of endomycorrhizal fungi capable of forming symbiotic associations with over 90% of vascular plants in terrestrial ecosystems. AMF hyphae contribute to the acquisition of mineral nutrients by host plant roots and improve soil ecological structure. Following AMF colonization of host plants, the activation of defense mechanisms in host plants enhances resistance against pathogens. Additionally, AMF occupation of colonization sites reduces the invasion of pathogens. These achievements have demonstrated significant efficacy in plant disease control, indicating promising prospects for practical applications.Hence, it is imperative to systematically synthesize the mechanisms underlying disease resistance in the context of AMF and their host plants, as well as the reciprocal interactions influencing soil ecological amelioration by AMF. This endeavor aims to contribute novel perspectives to sustainable agricultural development and serve as a theoretical foundation for pertinent studies in the fields of plant-soil feedback effects and carbon-nitrogen cycling within terrestrial ecosystems.

Progress In this work,AMF are explored for their roles in enhancing plant nutrition, facilitating damage compensation, extending plant lifespan, and influencingfactors such as competition for root colonization sites and host photosynthate with soil-borne pathogens. This paper delves into thefunctionsof AMF in promotingplant growth and improving soil ecological structure. Particularly, it focuses on their contributionstoenhancing plant resistance to diseases, improving soil physical properties, and promoting soil biodiversity.AMF engage in interactions with other soil microorganisms, thereby facilitating the decomposition of organic compounds and the cycling of nutrients, which has profound ramifications on the health and stability of ecosystems. The pivotal role of AMF in soil remediation and the enhancement of soil ecological structure cannot be overstated. Their contributions encompass the amelioration of soil physical properties, facilitation of nutrient cycling, and augmentation of biodiversity. These multifaceted functions play a crucial role in sustaining soil health and fostering ecological equilibrium.

Conclusions and Prospects The role of AMF in enhancing plant stress resistance and improving soil ecological structure has garnered significant attention in ecological and agricultural research. Significant progress has been made in recent years, limitations in current research primarily lie in a more in-depth understanding of the mechanisms underlying the actions of AMF. This review highlights the potential application value of AMF in sustainable agricultural development and ecosystem health maintenance by analyzing its mechanisms in altering plant root morphology, competing with pathogens, and activating plant defense mechanisms. A deeper understanding of the molecular mechanisms of AMF and its adaptability under different environmental conditions is crucial for future research in agricultural ecology. Continued exploration of the functional diversity and adaptability of AMF under different environmental conditions contributes to a more comprehensive understanding of the practical application potential of AMF across various environments.

As an emerging organic microbial fertilizer, AMF exhibits considerable potential to significantly enhance plant growth efficiency and reduce the reliance on chemical fertilizers and pesticides in agriculture. This not only presents potential economic and ecological benefits for agricultural production but also contributes to mitigating adverse environmental impacts associated with chemical fertilizers and pesticides. Understanding the capabilities of AMF serves to propel agriculture towards sustainable development and offers novel solutions to the diverse challenges facing global agriculture.

Keywords:arbuscular mycorrhizal fungi; resistance; soil improvement; soil aggregates


参考文献(References)

[1]BAUER J, BLUMENTHAL N, MILLER A, et al. Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities[J]. Journal of Applied Ecology,2017,54(4):1028-1039.

[2]邱佳佳. 丛枝菌根真菌与玉米互作影响磷吸收的机制研究[D]. 泰安:山东农业大学,2017.QIU J J. 

Study on the mechanism of arbuscular mycorrhizal fungi affecting phosphorus absorption in interaction with maize[D].Taian:Shandong Agricultural University,2017.

[3]黄铭慧. 大豆尖镰孢根腐病拮抗菌X2生防菌剂的研制与应用[D]. 哈尔滨:东北农业大学,2017.

HUANG M H. Research and application on antagonisticbacteria(X2)powder for suppressing soybean root rot induced by Fusariumoxysporum[D]. Haerbin: Northeast Agricultural University,2017.

[4]石晶晶,张林,江飞焰,等. AM真菌菌丝际细菌具有固氮解磷双重功能[J]. 土壤学报,2021,58(5):1289-1298.

SHI J J, ZHANG L, JIANG F Y, et al. Dualfunctions of bacteria colonized on AM fungal hyphae-fixing N2 and solubilizing phosphate[J]. Acta PedologicaSinica,2021,58(5):1289-1298.

[5]PEREIRA S, MUCHAA,MARQUES G, et al. Improvement of some growth and yield parameters of faba bean (viciafaba) by inoculation with rhizobium laguerreae and arbuscular mycorrhizal fungi[J]. Cropand Pasture Science,2019,70(7):595-605.

[6]PU C, GE Y, YANG G, et al. Arbuscular mycorrhizal fungi enhance disease resistance of salvia miltiorrhiza to fusarium wilt[J]. Frontiers in Plant Science,2022,13:975558.

[7]RAVNSKOV S,LARSEN J. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition[J]. Plant Biology,2016,18(5):816-823.

[8]RITA B, ELENA B, SILVIA V, et al. Soil-plant interaction mediated by indigenous AMF in grafted and own-rooted grapevines under field conditions[J]. Agriculture,2023,13(5):1051.

[9]SHSFIEIF,SHAHIDI-NOGHABI S, SEDAGHATI E. The impact of arbuscular mycorrhizal fungi on tomato plant resistance against tuta absoluta (meyrick) in greenhouse conditions [J]. Journal of Asia-Pacific Entomology,2022,25(3):101971.

[10]AHAMMED G J, MAO Q, YAN Y, et al. Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to fusariumwilt in cucumber[J]. Phytopathology,2020,110(5):999-1009.

[11]ZHANG P, ZHANG W J, HU S J. Fungivorous nematode Aphelenchus avenae and collembola Hypogastruraperplexa alleviate damping-off disease caused by Pythium ultimum in tomato[J]. Plant and Soil,2022,482(1):175-189.

[12]ELSHAHAWY I, EL-MOHAMEDY R S,etal. Biological control of pythium damping-off and root-rot diseases of tomato using trichoderma isolates employed alone or in combination[J]. Journal of Plant Pathology,2019,101(3):597-608.

[13]RAVNSKOV S, CABRAL C, LARSEN J. Mycorrhiza induced tolerance in cucumis sativus against root rot caused by pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis[J]. Biological Control,2020,141:104133.

[14]DUAN W, LI X, LI Q, et al. Arbuscular mycorrhizal fungal community association determines the production of flavonoids and chlorogenic acid in Acer truncatumbunge[J]. Industrial Crops and Products,2024,208:117858.

[15]王蕾,张春楠,李洪波,等. 丛枝菌根真菌在蔬菜生产中的研究进展[J]. 微生物学通报,2021,48(11):4282-4295.

WANG L, ZHANG C N, LI H B, et al. Research progress on arbuscular mycorrhizal fungi in vegetable production[J].Microbiology China,2021,48(11):4282-4295.

[16]ABDEL-MAWGOUD M, BOUQELLAH N A, KORANY S M, et al. Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium(TI)toxicity[J]. Plant Physiology and Biochemistry,2023,203:108077.

[17]ZHANG X, AN Z, CAO M M, et al. Arbuscular mycorrhizal hyphal respiration makes a large contribution to soil respiration in a subtropical forest under various N input rates[J]. Science of the Total Environment,2022,852:158309.

[18]谢琳淼,常春丽,姚志红,等 . 哈茨木霉对紫羊茅和草地早熟禾的促生及抗性诱导作用[J]. 草业科学,2018,35(9):2079-2086. 

XIE L M, CHANG C L, YAO Z H, et al. Growth promotion and resistance induction effect of Trichoderma harzianum on Festuca rubra and Poa pratensis[J]. Pratacultural Science,2018,35(9):2079-2086

[19]DIAGNE N, NGOM M, DJIGHALY P, et al. Roles of arbuscular mycorrhizal fungi on plant growth and performance:importance in biotic and abiotic stressed regulation[J]. Diversity,2020,12(10):370.

[20]王晓念. 水分胁迫下丛枝菌根真菌对桑树苗的促生作用研究[D]. 重庆:重庆三峡学院,2023. 

WANG X N. Study on the promotion of mulberry seedlings by arbuscular mycorrhizal fungi under water stress [D].Chongqing: Chongqing Three Gorges University,2023.

[21]FERREIRA D A, DA S T F, PYLRO V S, et al. Soil microbial diversity affects the plant-root colonization by arbuscular mycorrhizal fungi[J]. Microbial Ecology,2021,82(1):100-103.

[22]WENG W F, YAN J, ZHOU M L, et al. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases[J]. Microorganisms,2022,10(7):1266.

[23]ZUBEK S, KAPUSTA P, ROŻEK K, et al. Fungal root colonization and arbuscular mycorrhizal fungi diversity in soils of grasslands with different mowing intensities[J]. Applied Soil Ecology,2022,172:104358.

[24]BENNETT A E, GROTEN K. The costs and benefits of plant-arbuscular mycorrhizal fungal interactions[J]. Annu Rev Plant Biol,2022,73(1):649-672.

[25]MEDDAD-HAMZA A, BENZINA F, MEDDAD C, et al. Biological control of arbuscular mycorrhizal fungi and trichodermaharzianum against fusarium oxysporum and verticillium dahliae induced wilt in tomato plants[J]. Egyptian Journal of Biological Pest Control,2023,33(1):91.

[26]DEVI N O, TOMBISANA D R K, DEBBARMA M, et al. Effect of endophytic bacillus and arbuscular mycorrhiza fungi (AMF)against fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici[J]. Egyptian Journal of Biological Pest Control,2022,32(1):1.

[27]刘萌,邵晨阳,王潇笛,等 . 两种内生真菌联合使用对烟草抗青枯病的影响[J]. 中国植保导刊,2023,43(7):11-15,20. 

LIU M, SHAO C Y, WANG X D, et al. Effect of two endophytic fungi on the eesistance of tobacco to bacterial wilt [J].China Plant Protection Guide,2023,43(7):11-15,20.

[28]林熠斌,杨玉瑞,黄荣雪,等 . 茉莉酸介导丛枝菌根真菌诱导番茄抗早疫病的机制[J]. 生态学报,2020,40(7):2407-2416. 

LIN Y B,YANG Y R,HUANG R X, et al. Mechanism of jasmonic acid mediated induction of disease resistance against early blight by arbuscular mycorrhizal fungus in tomato plants[J]. Acta EcologicaSinica,2020,40(7):2407-2416.

[29]李晴,段文艳,李鑫,等. 丛枝菌根真菌对元宝枫生长及其根系形态的影响[J]. 咸阳:西北农林科技大学学报(自然科学版),2024(1):1-8.

LI Q, DUAN W Y, LI X, et al. Effects of arbuscular mycorrhizal fungi on the growth and root morphology of Acer truncatum[J]. Xianyang:Journal of Northwest Agriculture and Forestry University (Natural Science Edition),2024(1):1-8.

[30]许平辉. 丛枝菌根真菌(AMF)对水分胁迫下茶树生长及抗旱性的影响[D]. 咸阳:西北农林科技大学,2017. 

XU P H. Effects of arbuscular mycorrhizal fungi (AMF) on the growth and drought resistance of tea trees under water stress [D]. Xianyang: Xian Northwest Agriculture and Forestry University,2017.

[31]熊丙全,余东,阳淑,等. 丛枝菌根真菌对葡萄幼苗抗旱性的影响研究[J]. 中国果树,2018(2):8-12. 

XIONG B Q, YU D, YANG S, et al. Study on the effect of arbuscular mycorrhizal fungi on the drought resistance of grape seedlings [J]. China Fruits,2018(2):8-12.

[32]叶秋红. 丛枝菌根真菌对酿酒葡萄生长及抗旱性的影响[D]. 咸阳:西北农林科技大学,2022. 

YE Q H. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of wine grapes [D]. Xianyang: Xian Northwest Agriculture and Forestry University,2022.

[33]张宸瑞,李晓岗,顾雯,等. 丛枝菌根真菌促进植物抵抗生物胁迫作用机制的研究进展[J]. 中草药,2023,54(9):3022-3031. 

ZHANG C R, LI X G, GU W, et al. Research progress on mechanism of arbuscular mycorrhizal fungi promoting plant resistance to biological stress[J]. Chinese Herbal Medicine,2023,54(9):3022-3031.

[34]师艳丽. 离子型稀土废弃矿区AM真菌多样性及对宽叶雀稗氮降解能力的影响[D]. 赣州:江西理工大学,2020. 

SHI Y L. Diversity of AM fungi in ion-type rare earth mine wasteland and their effect on nitrogen degradation capacity of broadleaf carpetgrass [D]. Ganzhou: Jiangxi University of Science and Technology,2020.

[35]刘耀臣,王震,王策,等. 丛枝菌根真菌对盐胁迫下芹菜生长和生理指标的影响[J]. 北方园艺,2019(18):47-51. 

LIU Y C, WANG Z, WANG C, et al. Effect of arbuscular mycorrhizal fungi on the growth and physiological indicators of celery under salt stress [J]. Northern Horticulture,2019(18):47-51.

[36]谭英,尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报,2024,33(6):1-12. 

TAN Y, YIN H. Effects of root application of AMF and melatonin on growth, photosynthetic characteristics, and antioxidant system of medicagosativa under salt stress[J]. Acta Prataculturae Sinica,2024,33(6):1-12.

[37]王磊,吴子龙,张浩,等. 丛枝菌根真菌促进植物抗重金属镉的研究进展[J]. 北方园艺,2021(1):137-142. 

WANG L, WU Z L, ZHANG H, et al. Research progress on arbuscular mycorrhizal fungi promoting plant resistance to heavy metal cadmium [J]. Northern Horticulture,2021(1):137-142.

[38]张翔宇. 丛枝菌根真菌提高蒺藜苜蓿耐铅机制的研究[D]. 咸阳:西北农林科技大学,2020. 

ZHANG X Y. Study on the mechanism of arbuscular mycorrhizal fungi enhancing lead tolerance in medicago sativa [D].Xianyang: Xian Northwest Agriculture and Forestry University,2020.

[39]周民. 锑胁迫条件下接种AM真菌对水稻生理生态和吸收积累锑的影响[D]. 青岛:青岛理工大学,2018. 

ZHOU M. Effects of AM fungi inoculation on the physio-ecology of rice and accumulation of antimony under antimony stress [D]. Qingdao: Qingdao University of Technology,2018.

[40]BALESTRINI R, LUMINI E. Focus on mycorrhizal symbioses [J]. Applied Soil Ecology,2018,123:299-304.

[41]VAN D H M G A , MARTIN F M ,SELOSSE M, et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist,2015,205(4):1406-1423.

[42]XIE K, REN Y H, CHEN A Q, et al. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi[J]. Journal of Plant Physiology,2022,269:153591.

[43]CAVAGNARO T R, BENDER S F, ASGHARI H R,et al. The role of arbuscular mycorrhizas in reducing soil nutrient loss[J]. Trends in Plant Science,2015,20(5):283-290.

[44]ZENG J Y, MA S L, LIU J, et al. Organic materials and AMF addition promote growth of taxodium ‘zhongshanshan’ by improving soil structure[J]. Forests,2023,14(4):731.

[45]LI Z, WU S, LIU Y, et al. Arbuscular mycorrhizal symbiosis enhances water stable aggregate formation and organic matter stabilization in Fe ore tailings[J]. Geoderma,2022,406:115528.

[46]MORRIS E K, MORRIS D J P, VOGT S, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi [J]. The ISME Journal,2019,13(7):1639-1646.

[47]PAUWELS R, GRAEFE J, BITTWELICH M. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way [J]. Mycorrhiza,2023,33(3):165-179.

[48]WU Y T, DENG M F, HUANG J S, et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis [J]. Soil Biology and Biochemistry,2022,166:108578.

[49]LI J, COOPER J M, LI Z A,et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain [J]. Applied Soil Ecology,2015,96:75-87.

[50]ZHOU J Q, WILSON G W T, COBB A B, et al. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity [J]. Mycorrhiza,2022,32(1):15-32.

[51]JOSÉMIGUEL B,MARÍA J P,ROSARIOA,et al. Microbial co-operation in the rhizosphere[J] Journal of Experimental Botany,2005,56(417):1761-1778.

[52]FAGHIHINIA M, JANSA J, HALVERSON L J, et al. Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns[J]. Biology and Fertility of Soils,2022,59(1):17-34.

[53]RILLING M C, WRIGHT S F, NICHOLS K A,et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil,2001,233(2):167-177.