ISSN 1008-5548

CN 37-1316/TU

2024年30卷  第2期
<返回第2期

喷雾热解法加热壁温对铈锆固溶体生产过程的影响

Effect of heating wall temperature on cerium zirconium solid solution productive process by spray pyrolysis

伍永福1a,3 , 栗 志1a , 赵 爽1a , 刘中兴1b,3 , 王振峰1b,3 , 董云芳1b,3 , 刘玉宝2 , 马守营1a

(1. 内蒙古科技大学 a. 能源与环境学院, b. 材料与冶金学院, 内蒙古 包头 014000;2. 包头稀土研究院白云鄂博稀土资源研究与综合利用国家重点实验室, 内蒙古 包头 014010;3. 轻稀土清洁提取与应用内蒙古自治区工程研究中心, 内蒙古 包头 014010)


引用格式:

伍永福, 栗志, 赵爽, 等. 喷雾热解法加热壁温对铈锆固溶体生产过程的影响[J]. 中国粉体技术, 2024, 30(2): 1-11.

WU YF, LI Z,ZHAOS,et al. Effect of heating wall temperature on cerium zirconium solid solution productive process by spray pyrolysis[J]. China Powder Science and Technology, 2024, 30(2): 1-11.

DOI:10.13732 / j.issn.1008-5548.2024.02.001

收稿日期: 2023-08-17,修回日期:2023-10-18,上线日期:2023-12-28。

基金项目:国家自然科学基金项目,编号:51964039;内蒙古自治区自然科学基金项目,编号:2022LHMS05004;内蒙古自治区应用技术研究与开发资金项目,编号:2021GG0103。

第一作者简介:伍永福(1974—),男,教授,博士,硕士生导师,研究方向为冶金热过程绿色低碳新技术开发与应用。 E-mail: wyf07@imust.edu.cn。

通信作者简介:刘中兴(1963—),男,教授,博士,内蒙古自治区跨世纪、 新世纪 321 人才、 包头市“5512”工程领军人才,硕士生导师,研究方向为稀土绿色冶金技术开发。 E-mail: liuzx@imust.edu.cn。


摘要:【目的】为了探究喷雾热解过程中加热壁温对铈锆固溶体生产过程的影响,分析热解炉内的流量场和浓度场的变化情况,实现对热解炉的设计优化。【方法】采用数值模拟的方法,建立喷雾热解炉的物理模型,分别探讨了加热壁温对铈锆固溶体在热解炉的不同阶段及热解炉中水蒸气分布和 HCl 分布的影响。【结果】当热解温度为850℃时,液滴的反应主要分 2 个阶段,在炉膛高度为0~0.05m处,为加热蒸发阶段,在炉膛高度为0. 05~0.6m处,为稳态热解阶段。当炉壁温度为 550~ 650 ℃时,在炉膛高度为0. 9m处温度变化放缓,喷雾处于稳定热解阶段;而壁温在750~850℃时,在炉膛高度为 0. 6 m 处温度变化放缓;当壁温为850℃时,在炉膛高度为0. 1~0.6 m处的温度曲线斜率最大,液滴达到稳定蒸发阶段的时间缩短,水分蒸发变快,热解时间变短。【结论】炉壁加热区的温度越高,HCl生成的速度越快,速度的最大值越小,在炉膛高度为 0. 4 m 处速度变化最大,达到 1. 6 m/ s 左右;并且整体 HCl 生成的量随温度的升高而增大,平均速度变化随着热空气温度的升高而减小。

关键词: 喷雾热解; 铈锆固溶体; 稳态热解; 稳定热解

Abstract

Objective During spray pyrolysis, a series of complex chemical reactions and physical changes occur, most of which occur at high temperatures. Therefore, it is difficult to directly observe the velocity field and various concentration fields in pyrolysis furnaces, but the velocity field, temperature field and various concentration fields have a crucial impact on the design optimization of pyrolysis furnaces and the study of pyrolysis processes. In order to investigate the effect of the heating wall temperature on the solution of cerium-zirconium solids during spray pyrolysis, the temperature field, flow field and concentration field variations in the pyrolysis furnace were analyzed and further design and optimization of the pyrolysis furnace was implemented.

Methods A hydrodynamic numerical simulation method was used to simulate the spray pyrolysis furnace and a physical model of the spray pyrolysis furnace was developed. The influence of heating wall temperature on the reaction process was studied, and on the premise of verifying the correctness of the model, it was hoped that the changes of various fields during the reaction process of spray pyrolysis furnace could be accurately reflected, and the simulation results could be used to guide the optimization of the experiment. The thermal and velocity fields in the pyrolysis furnace were calculated quantitatively. The distributions of the temperature, velocity and concentration fields in the furnace at different heating wall temperatures were described qualitatively and quantitatively and compared.

Results and Discussion In the process of spray pyrolysis, when the temperature of spray pyrolysis is 850 ℃ , the reaction of spray pyrolysis droplets is mainly divided into two stages, respectively: at 0-0. 05 m in the furnace, it is the spray pyrolysis heating evaporation stage. Within 0. 05-0. 6 m of the furnace, the steady-state pyrolysis phase of the spray pyrolysis occurs. When the spray pyrolysis furnace wall temperature rises from 550 ℃ to 650 ℃, the spray pyrolysis temperature in the furnace changes slowly at 0. 9 m, and the spray pyrolysis process is in the stable pyrolysis stage. When the furnace wall temperature is in the range of 750- 850 ℃, the change of spray pyrolysis temperature in the furnace slows down at 0. 6 m. When the wall temperature is 850 ℃ , the temperature slope of the furnace is the largest at 0. 1-0. 6 m, and the time required for droplets to reach the stable evaporation stage of spray pyrolysis is shortened. At the same time, the rate of evaporation of water is accelerated and the total time required for pyrolysis is shortened.

Conclusion The higher the temperature in the heating zone of the furnace wall during the spray pyrolysis, the faster the HCl formation rate and the smaller the maximum air velocity. At a height of 0. 4 m in the furnace, the velocity changes most, reaching about 1. 6 m/ s. Moreover, the amount of produced HCl increases with temperature because the reaction is facilitated at high temperatures. Since the viscous resistance of the air increases with the increase of temperature and the average velocity decreases with the increase of the heating wall temperature, the velocity is minimum at the temperature of 850 ℃ .

Keywords: spray pyrolysis; cerium zirconium solid solution; numerical simulation


参考文献(References):

[1]李佩珩, 魏众, 刘伟, 等. 稀土催化材料—铈锆固熔体的研究与应用[J]. 中国稀土学报, 2003(增刊 2): 26-29. LI P H, WEI Z, LIU W, et al. Research and application of rare earth catalytic materials cerium zirconium solid melt[ J]. Chinese Journal of Rare Earths, 2003(S2): 26-29. 

[2]LOVELL E, HORLYCK J, SCOTT J, et al. Flame spray pyrolysis-designed silica / ceria-zirconia supports for the carbon dioxide reforming of methane[J]. Applied Catalysis A General, 2017, 546: 47-57. 

[3]袁嘉琪. 制备超细复合氧化物喷雾装置雾化特性的数值模拟研究[D]. 包头: 内蒙古科技大学, 2021. YUAN J Q. Numerical simulation study on atomization characteristics of spray device for preparing ultra-fine composite oxide [D]. Baotou: Inner Mongolia University of Science and Technology, 2021. 

[4]钱丽娟. 雾化射流场中粒子运动和传热特性的研究[D]. 杭州: 浙江大学, 2010. QIAN L J. Research on particle motion and heat transfer characteristics in atomized jet field [D]. Hangzhou: Zhejiang University, 2010. 

[5]皮骏, 李志伟, 原郭丰. 气旋型喷雾干燥塔干燥效率的模拟分析[J]. 机床与液压, 2014, 42(21): 146-150. PI J, LI Z W, YUAN G F. Simulation analysis of drying efficiency of cyclonic spray drying tower[ J]. Machine Tool and Hydraulic, 2014, 42 (21): 146-150. 

[6]张丽丽, 史岩彬, 王仁人. 液滴干燥过程的模拟研究[J]. 中国粉体技术, 2011, 17(4): 32-35. ZHANGL L, SHI Y B, WANG R R. Simulation study of droplet drying process[J]. China Powder Science and Technology, 2011, 17(4): 32-35. 

[7]马川川, 张丽丽. 气流式喷雾干燥过程的计算流体力学模拟[J]. 中国粉体技术, 2014, 20(5): 15-18. MA C C, ZHANG L L. Computational fluid dynamics simulation of airflow spray drying process[J]. China Powder Science and Technology, 2014, 20(5): 15-18. 

[8]吕超, 周楠, 孙铭赫. 文丘里热解反应器内气-液两相流流动特性的数值模拟[ J]. 有色金属工程, 2020, 10(10): 53-57. LV C, ZHOU N, SUN M H. Numerical simulation of gas-liquid two-phase flow characteristics in a Venturi pyrolysis reactor [J]. Non ferrous Metals Engineering, 2020, 10(10): 53-57. 

[9]刘燕, 李小龙, 张宸, 等. 稀土氯化物喷雾热解装置雾化效果的物理模拟[J]. 东北大学学报(自然科学版), 2019, 40(2): 218-223. LIU Y, LI X L, ZHANG C, et al. Physical simulation of atomization effect of rare earth chloride spray pyrolysis device[J]. Journal of Northeast University (Natural Science Edition), 2019, 40(2): 218-223. 

[10]HOSEINT, ZHANG T. Numerical simulation of TiO2 nanoparticle synthesis by flame spray pyrolysis[J]. Powder Technology, 2018, 329: 426-433. 

[11]谢晓勇. 循环滤布收尘的静电除尘器的仿真研究[D]. 桂林: 桂林电子科技大学, 2021. XIE X Y. Simulation study on electrostatic precipitator with circulating filter cloth [ D]. Guilin: Guilin University of Electronic Technology, 2021.