ISSN 1008-5548

CN 37-1316/TU

最新出版

超支化硅氧烷改性PVDF氟碳涂层的固化行为调控与超疏水构筑

Curing behavior regulation and superhydrophobic construction of hyperbranched siloxane-modified PVDF fluorocarbon coatings

段广彬1 ,吴玉涛2 ,雷新俊2 ,刘 坤2 ,徐鲁硕2 ,耿 兵1

1. 济南大学 材料科学与工程学院,山东 济南 250022;2. 平耐新材料科技(山东)有限公司,山东 菏泽 274300


引用格式:

段广彬,吴玉涛,雷新俊,等 . 超支化硅氧烷改性 PVDF 氟碳涂层的固化行为调控与超疏水构筑[J]. 中国粉体技术,2026,32(4):1-12.

DUAN Guangbin, WU Yutao, LEI Xinjun, et al. Curing behavior regulation and superhydrophobic construction of hyperbranched siloxane-modified PVDF fluorocarbon coatings[J]. China Powder Science and Technology,2026,32(4):1−12.

DOI:10.13732/j.issn.1008-5548.2026.04.017

收稿日期:2025-12-26,修回日期:2026-01-06,上线日期:2026-01-21。

基金项目:国家自然科学基金项目,编号:52272017;山东省重点扶持区域引进急需紧缺人才项目;山东省自然科学基金项目,编号:ZR2023LFG004。

第一作者:段广彬(1983—),男,教授,博士,硕士生导师,研究方向为高性能涂料、新能源材料及工程等方面。E-mail:mse_duangb@ujn. edu. cn。


摘要:【目的】研究超支化硅氧烷对氟碳涂料(polyvinylidene fluoride, PVDF)的结构调控与热行为影响规律。【方法】通过溶胶-凝胶法制备超支化硅氧烷及硅烷改性纳米SiO₂颗粒,分别添加质量分数为1%、2%、3%超支化硅氧烷的KH550改性PVDF涂料,依次命名为PVDF-1、PVDF-2、PVDF-3;研究改性涂料在保持PVDF主体结构稳定的条件下实现涂料中无机-有机耦合与工艺的优化,并通过表面构筑获得涂料的超疏水性能;采用傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电子显微镜-能量色散 X 射线能谱(scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy,SEM-EDS)、差示扫描量热法(differential scanning calorimetry,DSC)及热重分析-微分热重分析(thermogravimetric analysis and derivative thermogravimetry,TG-DTG)对系列涂层的结构、形貌与热行为进行表征,同时构筑超疏水表面。【结果】FTIR显示改性后PVDF涂层的主要特征峰位置基本不变,EDS表明改性样品表层出现Si元素且分布更均匀;未改性的空白样品PVDF-0在DSC中呈双峰,而改性样品PVDF-3转为单峰;由DSC非等温热流曲线积分得到的α-T关系及其导数dα/dT-T曲线显示,PVDF-0在温度为75~95 ℃与125~135 ℃时存在双速率峰,而PVDF-3以低温单峰为主;TG-DTG 表明,起始分解温度由 331 ℃降至 316 ℃,最大失质量速率峰温由 357. 55 ℃降至 347. 02 ℃,600 ℃时的残余由52. 23%增加至53. 67%;涂层接触角提高至158°。【结论】超支化硅氧烷实现与PVDF的耦合并使热过程集中化,有利于简化固化工艺;利用超支化改性的纳米SiO₂颗粒可使涂层表面获得超疏水的功能。

关键词:超支化硅氧烷;氟碳涂层;固化过程;超疏水表面

Abstract

Objective Fluorocarbon coatings based on polyvinylidene fluoride (PVDF) are widely recognized for their long-term protection performance, but their inert backbone and multi-stage thermal evolution often lead to limited process controllability and unstable surface functions. Hyperbranched polysiloxane (HBP) provides multi-site interfacial regulation and low-surface-energy segments, offering a feasible approach to concentrating the thermal process and improving coating uniformity. This study aims to clarify how HBP reshapes the thermal pathway of PVDF coatings and construct a superhydrophobic surface through the gel-state deposition of MTMS-DEMS-SiO2 nanoparticles.

Methods HBP was synthesized from KH550 via hydrolysis/condensation reactions and subsequently incorporated into PVDF to prepare modified coatings, PVDF-0—PVDF-3. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were employed to evaluate the preservation of the PVDF structure and the distribution of silicon (Si) elements. The thermal curing behavior was analyzed using differential scanning calorimetry (DSC), supplemented with calculated conversion curves (α-T) and derivative curves (dα/dT-T) to quantify the evolution of the thermal process. Thermal stability was evaluated using thermogravimetric analysis and derivative thermogravimetry (TG-DTG). PVDF-4 was obtained by depositing MTMS-DEMS-SiO2 onto PVDF-3 in the gel state, followed by curing and contact-angle measurement.

Results and Discussion FTIR analysis indicated that PVDF characteristic peaks remained essentially unchanged after modification, while SEM-EDS confirmed effective and more uniform Si incorporation at the coating surface. DSC thermograms showed that PVDF-0 exhibited two peaks, while PVDF-3 changed to one dominant peak. Consistently, dα/dT-T displayed two rate peaks for PVDF-0 (75~95 ℃ and 125~135 ℃) but mainly a single low-temperature peak for PVDF-3, and α-T demonstrated earlier conversion of PVDF-3 at mid-low temperatures, indicating a "two-step to one-step" concentrating effect. TG-DTG showed Tonset decreases from 331 ℃ to 316 ℃ and Tmax shifts from 357. 55 ℃ to 347. 02 ℃ , while the 600 ℃ residue increased from 52. 23% to 53. 67%. Gel-state deposition of MTMS-DEMS-SiO2 yielded hierarchical roughness and increased the static water contact angle from 100°to 158°, achieving superhydrophobicity.

Conclusion In this study, HBP enables effective interfacial integration without altering PVDF’s main functional groups and concentrates the thermal process from dual-peak to single-peak behavior, which helps simplify the curing schedules. Gel-state MTMS-DEMS-SiO2 deposition further constructs hierarchical roughness, producing a superhydrophobic PVDF coating with 158°contact angle.

Keywords:hyperbranched siloxane; fluorocarbon coating; curing process; superhydrophobic surface


参考文献(References)

[1]ASAKAWA H, SAKAKI M. Waterborne fluoropolymers for paint use[J]. Journal of Oil Colour Chemists’ Association,2000,83:185-192.

[2]WOOD K A. Optimizing the exterior durability of new fluoropolymer latex[J]. Progress in Organic Coatings,2001,42(1/2):25-34.

[3]王振,杨柳,杨永志,等 . 基于石墨烯表面刷的聚偏氟乙烯电介质材料性能研究[J]. 聊城大学学报(自然科学版),2023,36(4):67-73.

WANG Z, YANG L, YANG Y Z,et al. Research of PVDF dielectric materials based on graphene surface brush[J]. Jour⁃nal of Liaocheng University(Natural Science Edition),2023,36(4):67-73.

[4]WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.

[5]CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551.

[6]BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8.

[7]黄建业,王峰会,赵翔,等. 超疏水状态的润湿转变与稳定性测试[J]. 物理化学学报,2013,29(11):2459-2464.

HUANG J Y, WANG F H, ZHAO X, et al. Wetting transition and stability testing of superhydrophobic state[J]. Acta Physico-Chimica Sinica,2013,29(11):2459-2464.

[8]QUÉRÉ D. Wetting and roughness[J]. Annual Review of Materials Research,2008,38:71-99.

[9]NOSONOVSKY M, BHUSHAN B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering [J]. Current Opinion in Colloid & Interface Science,2009,14(4):270-280.

[10]BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion,and drag reduction [J]. Progress in Materials Science,2011,56(1):1-108.

[11]HOODA A, GOYAT M S, PANDEY J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings [J]. Progress in Organic Coatings,2020,142:105557.

[12]KUMAR D, WU X, FU Q, et al. Mechanically robust polyvinylidene fluoride (PVDF)-based superhydrophobic coatings for self-cleaning applications [J]. Progress in Organic Coatings,2016,101:385-390.

[13]WANG H Y, LIU Z J,WANG E Q, et al. Robust superhydrophobic PVDF composite coating with wear resistance and corrosion resistance[J]. Applied Surface Science,2015,332:518-524.

[14]MOHD MOHAMED A A, SANTO J L, ABU SEMAN S, et al. Sprayed PVDF-Al2O3 composite coating: wettability and durability[J]. Materials,2021,14(21):6358.

[15]XU W T, ZHAO Z P, LIU M, et al. Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol-water mixture [J]. Journal of Membrane Science,2015,491:110-120.

[16]LUO Z L, LI Y, DUAN C, et al. Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF micoparticles/KH-550 by one-step dip-coating method[J]. RSC Advances,2018,8:19315-19324.

[17]ZHU C F, YANG H T, LIANG H B, et al. Novel UV-curable fluorinated siloxane resins with low surface energy for functional coatings[J]. Polymers,2018,10(6):640.

[18]SUN X, CHEN R R, GAO X, et al. Epoxy-modified polysiloxane coatings with enhanced antifouling and adhesion strength [J]. European Polymer Journal,2019,120:109206.

[19]WANG Y, LI J, ZHANG H, et al. Siloxane-based antifouling coatings: advances in low surface energy and durability [J]. Colloid and Polymer Science,2023,301:1-20.

[20]ZHUANG M Y, WANG Y D, XU Y, et al. Construction and properties of release coating based on hydrogen-terminated hyperbranched polysiloxane[J]. Progress in Organic Coatings,2025,194:108968.

[21]KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards,1956,57(4):217-221.

[22]吴勇,朱靖,汪小憨,等. 含磷腈环氧树脂阻燃和热解动力学[J]. 高分子材料科学与工程,2016,32(3):54-58.

WU Y, ZHU J, WANG X H, et al. Thermal decomposition kinetics and flame retardance of phosphazene-containing epoxy resin[J]. Polymer Materials Science & Engineering,2016,32(3):54-58.

[23]FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polymer Letters,1966,4(5):323-328.

[24]VYAZOVKIN S. Kissinger method in kinetics of materials: to be or not to be?[J]. Molecules,2020,25(12):2818.

[25]LIU F, HASHIM N A, LIU Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1/2):1-27.