ISSN 1008-5548

CN 37-1316/TU

最新出版

高温耐热钨基复合粉体制备与特性的研究进展

Research progress on preparation and properties of high-temperature resistant tungsten-based composite powders

吴玉程1a,1b,1c, 朱晓勇1 a,1b,1c,汤俊宇1a,陈宇1a,姚刚2,罗来马1a,1b,1c,刘家琴3,4

1. 合肥工业大学 a. 材料科学与工程学院, b. 高性能铜合金材料及成形加工教育部工程研究中心, c. 有色金属与加工技术国家地方联合工程研究中心, 安徽 合肥 230009; 2. 内蒙古科技大学 材料科学与工程学院, 内蒙古 包头 014010;3. 安徽省先进复合材料设计与制造工程研究中心, 安徽 合肥 230050; 4. 北京化工大学 化学学院, 北京 100008

引用格式:吴玉程, 朱晓勇, 汤俊宇, 等. 高温耐热钨基复合粉体制备与特性的研究进展[J]. 中国粉体技术, 2026, 32(2): 1-17.

WU Yucheng, ZHU Xiaoyong, TANG Junyu, et al. Research progress on preparation and properties of high-temperature resis⁃tant tungsten-based composite powders[J]. China Powder Science and Technology, 2026, 32(2): 1−17.

DOI:10.13732/j.issn.1008-5548.2026.02.005

收稿日期: 2024-09-20, 修回日期: 2025-11-27, 上线日期: 2025-12-18。

基金项目: 国家重大研发计划项目, 编号: 2022YFE03140001、2022YFE03140004、2022YFE03030003、2019YFE03120002、2017YFE03000604; 国家自然科学基金国际(地区)交流与合作重点项目,编号:52020105014; 国家自然科学基金项目,编号:51474083、51672065、52501045; 国家“清洁能源新材料与技术”学科创新引智基地项目,编号:B18018。第一作者: 吴玉程(1962—), 男, 教授, 博士生导师, 国家有突出贡献特殊津贴专家, 研究方向为聚变材料和有色金属材料与加工。E-mail:ycwu@hfut. edu. cn。

摘要: 【目的 研究高温耐热钨(W)基复合粉体制备与特性,探讨制备钨基材料整个工艺流程最前端工序的特点,钨基块体材料的质量对最终其工程应用的影响,以及后续烧结及后续加工变形处理后钨基块体性能对钨基粉体的特性决定作用。 【研究现状】 综述不同种类钨基复合粉体的制备工艺,包括聚变装置用第二相掺杂钨基复合粉体、高端装备用W铼(Re)合金粉体、电子封装领域用W-铜(Cu)复合粉体;第二相掺杂钨基复合粉体主要包括W包覆第二相的核壳结构的设计与优化,W-Re合金粉体主要包括W与Re元素的均匀固溶分布,W-Cu复合粉体主要包括W包覆Cu复合粉体的结构设计与改进等的研究;掺杂第二相主要为氧化物氧化钇(Y2O3)、氧化镧(La2O3)、氧化锆(ZrO2)、氧化铪(HfO2)等,以及碳化物碳化钛(TiC)、 碳化锆(ZrC)、碳化铪(HfC)等,主要采用机械球磨和化学法制备相应粉体;W-Re合金粉体的制备方法分为机械法、混粉法和化学法;采用机械球磨、湿化学法、溶胶-凝胶法等方法,可获得具有优异烧结活性的纳米级W-Cu复合粉体,进而制备致密度高的W-Cu复合材料。 【结论与展望】 提出制备钨基粉体常用的方法,机械法的主要问题是长时间球磨可能产生杂质影响及粉体冷焊,化学法主要问题是制备过程中的副产物包含氨气及随着分解产生的氮氧化物,须要考虑环境保护问题;认为高质量钨基复合粉体是获得高性能钨材料的关键,因此钨基复合粉体结构及制备技术仍须进一步优化。

关键词 钨基粉体; 核聚变装置; 第二相掺杂钨铼合金; 钨铜合金

Abstract

Significance Tungsten (W)-based composite powders play a crucial role in various high-tech fields such as aerospace, nuclear energy, and microelectronics due to tungsten's excellent properties, including high melting point, high density, and good ther⁃mal conductivity. This review aims to comprehensively summarize the research status of the preparation technologies of W-based composite powders and analyze their characteristics and existing problems, thereby providing a reference for the development of high-performance W-based materials.

Progress In the preparation of second-phase particle-doped W-based composite powders for fusion devices, mechanical ball milling is commonly employed. However, mechanical ball milling has certain drawbacks. Prolonged high-energy milling can lead to wear of the milling jar liner and balls, resulting in contamination of the composite powders. Moreover, extended milling time increases the surface energy of the powders, which accelerates sintering neck formation and excessive grain growth during sintering. Chemical methods for preparing second-phase particle-doped W-based composite powders mainly include solidliquid doping and liquid-liquid doping. Solid-liquid doping is typically applied in carbide dispersion strengthened (CDS) W materials but faces challenges due to the reaction between carbides with oxygen during sintering. In contrast, liquid-liquid dop⁃ing is commonly used for oxide dispersion-strengthened (ODS) W materials. In recent years, various chemical methods have been developed, such as wet chemical methods, sol-gel processes, freeze-drying, and hydrothermal methods. Although these chemical methods can produce ODS-W-based composite powders with excellent microstructures, environmental concerns regard⁃ing ammonia and nitrogen oxides must be addressed in large-scale production. For W-rhenium (Re) alloy powders designed for high-end equipment, the primary goal is to achieve a uniform solid solution distribution of W and Re. Mechanical methods still struggle with uneven alloying. Mixed methods, including solid-solid and solid-liquid doping, are widely used. Among these, solid-liquid doping can achieve better dispersion and more uniform distribution of W and Re compared to solid-solid doping. However, for W powders with high Re content, uniformity remains insufficient. Chemical methods using ammonium metatung⁃state and ammonium perrhenate as raw materials, in combination with processes such as co-precipitation, sol-gel, and spray drying, are gradually emerging as new approaches to prepare uniform, ultrafine W-Re alloy powders. However, due to the dif⁃fering reduction characteristics of W and Re powders, issues of compositional uniformity persist. In the preparation of W-copper (Cu) composite powders, both mechanical and chemical methods are employed to enhance the sintering activity. However, mechanical alloying often leads to severe powder agglomeration and introduces impurities such as manganese and iron, adversely affecting the conductivity and thermal conductivity of W-Cu composites. Chemical methods, including electroless plating, solgel processes, co-precipitation, and wet chemical methods, can effectively improve sintering activity. Subsequent studies have shown that the addition of silver can enhance the density and performance of W-Cu composites. Overall, each method for prepar⁃ing W-based composite powders has their advantages and disadvantages.

Conclusions and Prospects In summary, current preparation methods for W-based composite powders exhibit distinct advan⁃tages and disadvantages. Future research should focus on optimizing preparation processes to enhance powder quality and perfor⁃mance. For second-phase particle-doped W-based composite powders, the exploration of more environmentally friendly chemi⁃cal methods and better control over second-phase particle distribution is essential. For W-Re alloy powders, addressing compo⁃nent uniformity, particularly in high-Re content powders, is crucial. In the preparation of W-Cu composite powders, efforts should be directed toward improving plating quality in chemical methods and minimizing impurities in mechanical methods. With the continuous development of related industries, the demand for high-performance W-based materials is expected to grow, indicating broad prospects for research in W-based composite powder preparation technologies.

Keywords: tungsten-based powder; nuclear fusion device; second-phase particle-doped tungsten-rhenium alloy; tungstencopper alloy

参考文献(References)

[1]COTTRELL G A. A survey of plasma facing materials for fusion power plants[J]. Materials Science and Technology, 2013, 22(8): 869-880.

[2]吴玉程. 面向核聚变应用钨基材料的制备与关键性能[M]. 北京: 科学出版社, 2021.

WU Y C. Preparation and key properties of tungsten-based materials for nuclear fusion applications[M]. Beijing: Science Press, 2021.

[3]WU Y C. Manufacturing of tungsten and tungsten composites for fusion application via different routes[J]. Tungsten, 2019, 1(1): 80-90.

[4]ANTOLINI E, GONZALEZ E R. Tungsten-based materials for fuel cell applications[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 245-266.

[5]SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1/2): 1-184.

[6]LASSNER E, SCHUBERT W D. Tungsten: properties, chemistry, technology of the elements, alloys, and chemical compounds[M]. New York: Springer Science & Business Media, 1999.

[7]BLOOM E E, BUSBY J T, DUTY C E, et al. Critical questions in materials science and engineering for successful development of fusion power[J]. Journal of Nuclear Materials, 2007, 367: 1-10.

[8]尹怡, 秦思贵, 史英丽, 等. 面向等离子体钨基材料热负荷损伤研究进展[J]. 粉末冶金技术, 2024, 42(3): 242-254.

YIN Y, QIN S G, SHI Y L, et al. Research progress on thermal load damage behavior of tungsten-based plasma facing materials[J]. Powder Metallurgy Technology, 2024, 42(3): 242-254.

[9]罗来马, 颜硕, 刘祯, 等. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势[J]. 粉末冶金技术, 2023, 41(1): 12-29.

LUO L M, YAN S, LIU Z, et al. Research progress and trend of advanced tungsten composite modification used for plasma facing materials[J]. Powder Metallurgy Technology, 2023, 41(1): 12-29.

[10]LUO L M, ZHAO Z H, YAO G, et al. Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices[J]. Journal of Nuclear Materials, 2021, 548: 152857.

[11]WANG R, XIE Z M, WANG Y K, et al. Fabrication and characterization of nanocrystalline ODS-W via a dissolution-precipitation process[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 104-113.

[12]WU Z M, ZHANG J, ZHANG J, et al. Nanocrystalline W-based alloys with ultrahigh hardness and exceptional irradiation tolerance[J]. Nuclear Fusion, 2019, 59(10): 106050.

[13]SUN H H, WANG M, ZHOU J N, et al. Effects of Al addition with different contents on the performance of multi-doped tungsten alloys prepared by SPS[J]. Materials Characterization, 2022, 185: 111738.

[14]WANG M, SUN H H, PANG B L, et al. Structure evolution of Y2O3 and consequent effects on mechanical properties of W-Y2O3 alloy prepared by ball milling and SPS[J]. Materials Science and Engineering A, 2022, 832: 142448.

[15]TAN X Y, LI P, LUO L M, et al. Effect of mechanical milling on the microstructure of tungsten under He+ irradiation condition[J]. Fusion Engineering and Design, 2015, 100: 571-575.

[16]LANG S T, YAN Q Z, SUN N B, et al. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method[J]. Fusion Engineering and Design, 2017, 121: 366-372.

[17]DONG Z, LIU N, MA Z Q, et al. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69: 266-272.

[18]DONG Z, HU W Q, MA Z Q, et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys[J]. Materials Chemistry Frontiers, 2019, 3(10): 1952-1972.

[19]WAHLBERG S, YAR M A, ABUELNAGA M O, et al. Fabrication of nanostructured W-Y2O3 materials by chemical methods[J]. Journal of Materials Chemistry, 2012, 22(25): 12622-12628.

[20]DONG Z, LIU N, MA Z Q, et al. Microstructure refinement in W-Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering[J]. Scientific Reports, 2017, 7(1): 6051.

[21]HU W Q, DONG Z, MA Z Q, et al. Microstructure refinement in W-Y2O3 alloys via an improved hydrothermal synthesis method and low temperature sintering[J]. Inorganic Chemistry Frontiers, 2020, 7(3): 659-666.

[22]YAO G, LIU X P, ZHAO Z H, et al. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement[J]. Materials & Design, 2021, 212: 110249.

[23]DONG Z, MA Z Q, YU L M, et al. Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants[J]. Science China Materials, 2021, 64(4): 987-998.

[24]YAO G, CHEN H Y, ZHAO Z H, et al. The superior thermal stability and irradiation resistance capacities of tungsten composites synthesized by simple second-phase particle component modulation[J]. Journal of Nuclear Materials, 2022, 561: 153522.

[25]LIU R, WANG X P, HAO T, et al. Characterization of ODS-tungsten microwave-sintered from Sol-gel prepared nano-powders[J]. Journal of Nuclear Materials, 2014, 450(1/2/3): 69-74.

[26]HU W Q, KONG X W, DU Z F, et al. Synthesis and characterization of nano TiC dispersed strengthening W alloys via freeze-drying[J]. Journal of Alloys and Compounds, 2021, 859: 157774.

[27]HU W Q, DONG Z, YU L M, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering:microstructure refinement and second phase particles regulation[J]. Journal of Materials Science & Technology, 2020, 36: 84-90.

[28]HU W Q, DONG Z, MA Z Q, et al. W-Y2O3 composite nanopowders prepared by hydrothermal synthesis method: co-deposition mechanism and low temperature sintering characteristics[J]. Journal of Alloys and Compounds, 2020, 821: 153461.

[29]XU L, YAN Q Z, XIA M, et al. Preparation of La2O3 doped ultra-fine W powders by hydrothermal-hydrogen reduction process[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 238-242.

[30]DONG Z, MA Z Q, DONG J, et al. The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering[J]. Materials Science and Engineering A, 2020, 784: 139329.

[31]GEACH G A,HUGHES J E. The alloys of rhenium with molybdenum or with tungsten and having good high-temperature properties[C]//Plansee Proceedings. London:Pergamon Press, 1956: 245.

[32]HU Y J, FELLINGER M R, BUTLER B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten[J]. Acta Materialia, 2017, 141: 304-316.

[33]ZHAO B L, XIE Z M, LIU R, et al. Fabrication of an ultrafine-grained W-ZrC-Re alloy with high thermal stability[J]. Fusion Engineering and Design, 2021, 164: 112208.

[34]EKMAN M, PERSSON K, GRIMVALL G. Phase diagram and lattice instability in tungsten-rhenium alloys[J]. Journal of Nuclear Materials, 2000, 278(2/3): 273-276.

[35]BRYSKIN B D, CARLÉN J C. Sigma phase in tungsten-rhenium alloys: II[M]. Materials and Manufacturing Processes, 2007, 11: 83-98

[36]董帝, 张莹莹, 陈福鸽, 等. 钨铼合金粉末制备研究进展[J]. 粉末冶金工业, 2022, 32(4): 139-145.

DONG D, ZHANG Y Y, CHEN F G, et al. The research progress in preparation of tungsten-rhenium alloy powders[J]. Powder Metallurgy Industry, 2022, 32(4): 139-145.

[37]SILLER M, SCHATTE J, GERZOSKOVITZ S, et al. Microstructural evolution of W-10Re alloys due to thermal cycling at high temperatures and its impact on surface degradation[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105285.

[38]WEINBERGER T, ENZINGER N, CERJAK H. Microstructural and mechanical characterisation of friction stir welded 15-5PH steel[J]. Science and Technology of Welding and Joining, 2009, 14(3): 210-215.

[39]董帝, 王卫兵, 熊宁, 等. 钨铼合金的600 ℃高温摩擦磨损性能研究[J]. 粉末冶金工业, 2021, 31(3): 88-93.

DONG D, WANG W B, XIONG N, et al. Study on friction and wear properties of tungsten-rhenium alloys at 600 ℃[J]. Powder Metallurgy Industry, 2021, 31(3): 88-93.

[40]董帝, 刘国辉, 熊宁, 等. CT球管用旋转阳极靶的研究进展[J]. 真空电子技术, 2019(1): 37-40.

DONG D, LIU G H, XIONG N, et al. Development of rotating anode targets for CT tubes[J]. Vacuum Electronics, 2019(1): 37-40.

[41]TSUCHIDA K, MIYAZAWA T, HASEGAWA A, et al. Recrystallization behavior of hot-rolled pure tungsten and its alloy plates during high-temperature annealing[J]. Nuclear Materials and Energy, 2018, 15: 158-163.

[42]任喜强, 李运刚, 齐艳飞, 等. 钨铼合金制备工艺及其热负载行为的研究现状[J]. 稀有金属材料与工程, 2022, 51(7): 2681-2688.

REN X Q, LI Y G, QI Y F, et al. Research status of preparation technology and thermal loading behavior of W-Re alloys[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2681-2688.

[43]IVANOV E Y, SURYANARAYANA C, BRYSKIN B D. Synthesis of a nanocrystalline W-25 wt.% Re alloy by mechanical alloying[J]. Materials Science and Engineering: A, 1998, 251(1/2): 255-261.

[44]PRAMANIK S, SRIVASTAV A K, MANUEL JOLLY B, et al. Effect of Re on microstructural evolution and densification kinetics during spark plasma sintering of nanocrystalline W[J]. Advanced Powder Technology, 2019, 30(11): 2779-2786.

[45]PRAMANIK S, SRIVASTAV A K, MANUEL JOLLY B, et al. Effect of Re on microstructural evolution and densification kinetics during spark plasma sintering of nanocrystalline W[J]. Advanced Powder Technology, 2019, 30(11): 2779-2786.

[46]IQBAL Z, SAHEB N, SHUAIB A R. W-25% Re-HfC composite materials for pin tool material applications: synthesis and consolidation[J]. Journal of Alloys and Compounds, 2016, 674: 189-199.

[47]王喆, 李运波, 卓明川, 等. 电子探针搭配波谱仪表征钨铼合金[J]. 稀有金属与硬质合金, 2011, 39(4): 47-49, 59.

WANG Z, LI Y B, ZHUO M C, et al. Characterization of Re distribution in W-Re alloy by electron probe with spectrometer[J]. Rare Metals and Cemented Carbides, 2011, 39(4): 47-49, 59.

[48]宋琳, 蔡靖宇, 桂锦莹. 钨铼合金粉末冶金过程若干问题的初步研究[J]. 上海钢研, 1978(3): 1-18, 53.

SONG L, CAI J Y, GUI J Y. Preliminary study on some problems in powder metallurgy of tungsten-rhenium alloy[J]. Shonghai Steel & Iron Research, 1978(3): 1-18, 53.

[49]LAI C, WANG J S, ZHOU F, et al. Reduction, sintering and mechanical properties of rhenium-tungsten compounds[J]. Journal of Alloys and Compounds, 2018, 735: 2685-2693.

[50]XU W Z, WANG J, LUO L M, et al. The preparation process of ultrafine gain W-Re powder by wet chemical method and its effect on alloy properties[J]. Materials Today Communications, 2023, 34: 104955.

[51]WANG Y F, CHEN Z H, CHEN J X, et al. High strength and tackling structural relaxation by sub-grains synergistic deformation in W-Re alloy[J]. Materials Science and Engineering: A, 2024, 914: 147160.

[52]QUE Z Y, WEI Z C, LI X Y, et al. Pressureless two-step sintering of ultrafine-grained refractory metals: tungsten-rhenium and molybdenum[J]. Journal of Materials Science & Technology, 2022, 126: 203-214.

[53]ZHANG H, CAO W C, BU C Y, et al. Sintering behavior of molybdenum-copper and tungsten-copper alloys by using ultrafine molybdenum and tungsten powders as raw materials[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88: 105194.

[54]XIE H B, GUAN W M, LV H, et al. W-Cu/Cu composite electrodes fabricated via laser surface alloying[J]. Materials Characterization, 2022, 185: 111715.

[55]YAN Y F, KOU S Q, YANG H Y, et al. Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanisms[J]. International Journal of Extreme Manufacturing, 2023,

5(3): 032006.

[56]WANG Y L, ZHUO L C, YIN E H. Progress, challenges and potentials/trends of tungsten-copper (W Cu) composites/pseudo-alloys: fabrication, regulation and application[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105648.

[57]DONG L L, AHANGARKANI M, CHEN W G, et al. Recent progress in development of tungsten-copper composites: fabrication, modification and applications[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 30-42.

[58]GERMAN R M, TORRESANI E, OLEVSKY E A. Gravity-induced distortion during liquid-phase sintering[J]. Metallurgical and Materials Transactions A, 2023, 54(11): 4141-4150.

[59]陶应启, 王祖平, 方宁象, 等. 钨铜复合材料的制造工艺[J]. 粉末冶金技术, 2002, 20(1): 49-51.

TAO Y Q, WANG Z P, FANG N X, et al. Manufacture methods of tungsten-copper composites[J]. Powder Metallurgy Technology, 2002, 20(1): 49-51.

[60]陈文革, 丁秉均. 钨铜基复合材料的研究及进展[J]. 粉末冶金工业, 2001, 11(3): 45-50.

CHEN W G, DING B J. The progress and research of W-Cu matrix composites[J]. Powder Metallurgy Industry, 2001, 11(3): 45-50.

[61]JOHNSON J, GERMAN R. Chemically activated liquid phase sintering of tungsten-copper[J]. International Journal of Powder Metallurgy, 1944, 30(1):91-102.

[62]LI B Q, SUN Z Q, HOU G L, et al. Fabrication of fine-grained W-Cu composites with high hardness[J]. Journal of Alloys and Compounds, 2018, 766: 204-214.

[63]ZHANG Q, LIANG S H, ZHUO L C. Ultrafine-grained W-25 wt-%Cu composite with superior high-temperature characteristics[J]. Materials Science and Technology, 2017, 33(17): 2071-2077.

[64]ZHANG Q, LIANG S H, HOU B Q, et al. The effect of submicron-sized initial tungsten powders on microstructure and properties of infiltrated W-25wt.% Cu alloys[J]. International Journal of Refractory Metals and Hard Materials, 2016, 59: 87-92.

[65]LI C G, ZHOU Y H, XIE Y H, et al. Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W-20 wt.% Cu alloy[J]. Journal of Alloys and Compounds, 2018, 731: 537-545.

[66]MENG Y F, SHEN Y F, CHEN C, et al. Microstructures and formation mechanism of W-Cu composite coatings on copper substrate prepared by mechanical alloying method[J]. Applied Surface Science, 2013, 282: 757-764.

[67]LI Y, ZHANG J, LUO G Q, et al. Densification and properties investigation of W-Cu composites prepared by electroless-plating and activated sintering[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 255-261.

[68]HUANG L M, LUO L M, DING X Y, et al. Effects of simplified pretreatment process on the morphology of W-Cu composte powder prepared by electroless plating and its sintering characterization[J]. Powder Technology, 2014, 258: 216-221.

[69]ZHANG S H, ZHU Q Q, LI Q N, et al. Ultrafine-grained tungsten heavy alloy prepared by high-pressure spark plasma sintering[J]. Materials, 2022, 15(17): 6168.

[70]WANG Q, LI X Q, WEI S Z, et al. Phase and microstructure transition of high Cu content Cu-W composite powder fabricated by spray drying[J]. Metals, 2022, 12(9): 1522.

[71]GUO Y J, GUO H T, GAO B X, et al. Rapid consolidation of ultrafine grained W-30 wt.% Cu composites by field assisted sintering from the sol-gel prepared nanopowders[J]. Journal of Alloys and Compounds, 2017, 724: 155-162.

[72]SHANAGHI A, AMIRI A, KAZAZI M, et al. Effects of processing parameters on phase, morphology, mechanical and corrosion properties of W-Cu nanocomposite powder prepared by electroless copper plating[J]. Applied Physics A, 2020, 126(8): 601.

[73]WANG X R, WEI S Z, XU L J, et al. Preparation of W-Cu nano-composite powders with high copper content using a chemical co-deposition technique[J]. Advanced Powder Technology, 2018, 29(6): 1323-1330.

[74]DING X P, WANG C Y, RUAN F J, et al. Formation mechanism of W-coated Cu composite powders and the metal injection molding using polyoxymethylene-based binders[J]. Journal of Materials Research and Technology, 2024, 31: 338-

350.