刘杰1,2, 潘彬锋1,2, 张志敏1, 卢旭晨1
中国科学院 过程工程研究所, 介科学与工程国家重点实验室, 北京 100190; 2.中国科学院大学 化学工程学院, 北京 100049
引用格式:
刘杰, 潘彬锋, 张志敏, 等. 熔盐辅助镁热还原法制备介孔碳材料及其在超级电容器上的应用[J]. 中国粉体技术, 2026, 32(2): 1-10.
LIU Jie, PAN Binfeng, ZHANG Zhimin, et al. Preparation of mesoporous carbon via molten salt-assisted magnesiothermic reduction and its application in supercapacitors[J]. China Powder Science and Technology, 2026, 32(2): 1-10.
DOI:10.13732/j.issn.1008-5548.2026.02.010
收稿日期: 2025-02-26, 修回日期: 2025-04-11,上线日期: 2025-12-11。
基金项目: 国家自然科学基金项目,编号 :22278404。
第一作者: 刘杰(2000—),女,硕士生,研究方向为纳米储能材料制备及显微结构调控。E-mail:scliujie2000@163.com。
通信作者: 张志敏 (1982—), 男, 副研究员, 硕士生导师, 研究方向为镁资源综合利用、 高性能镁合金制备和纳米材料制备新方法。E-mail:zmzhang@ipe.ac.cn。
摘要: 【目的】 为了解决目前商业多孔碳应用于超级电容器电极材料时存在的可接触面积小、传质阻力大的问题,研究性能优异的介孔碳材料制备方法。 【方法】 采用熔盐介质中的镁热还原法,利用碳酸钠作为碳源和产物的石墨化催化剂制备介孔碳材料;通过产物的综合表征,探索其显微结构和电化学性能;研究镁热还原反应的过程机制和产物显微结构的成因。 【结果】 产物介孔碳具有较大的比表面积(752 m2·g-1)、较大的孔体积(1.22 cm3·g-1)、孔径单一(5.3 nm),缺陷密度低(强度比ID/IG为0.7)的特点,适合于水系电解质中储能;应用于超级电容器时,在电流密度为50 A·g-1时比电容可达113 F·g-1,当电流密度由1 A·g-1增至50 A·g-1时电容保持率达到76%。 【结论】 熔盐介质中镁热还原制备的的介孔碳具有独特的显微结构,可作为超级电容器的电极材料,从而实现其高倍率性能。
关键词: 镁热还原; 介孔碳; 超级电容器; 熔盐
Abstract
Objective To address the issues of limited accessible surface area and high mass transfer resistance in commercial porous carbon, it is essential to develop new methods for preparing mesoporous carbon. This study proposes a novel preparation method for mesoporous carbon and evaluates its potential as an electrode material for supercapacitors, providing valuable insights into the mechanisms of mesopore formation.
Methods The resulting mesoporous carbon was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption to determine its microstructure features and evaluate its application potential as a supercapacitor electrode. Its electrochemical performance was evaluated. Additionally, the preparation process was examined, and the reaction mechanism was proposed and discussed.Results and Discussion Pore structure analysis showed that the obtained mesoporous carbon had a specific surface area of 752 m2·g-1, a total pore volume of 1.22 cm3·g-1, and a pore width of 5.3 nm, making it suitable for high-performance supercapacitors with aqueous electrolytes. Raman spectroscopy revealed a 2D peak at 2 675 cm-1, with ID/IG and I2D/IG ratios of 0.7 and 0.8, respectively, confirming the presence of few-layer graphene nanosheets with a turbostratic structure. Additionally, regions of local order were observed via high-resolution TEM (HRTEM), indicating a high degree of graphitization. When applied in supercapacitors, the mesoporous carbon had a specific capacitance of 113 F·g-1 at a current density of 50 A·g-1, and maintained an excellent capacitance retention of 76% when the current density increased from 1 A·g-1 to 50·A g-1.
Conclusion This paper proposes a novel molten salt-assisted magnesiothermic reduction method for preparing mesoporous carbon, with sodium carbonate serving as the carbon source. During the synthesis process, sodium carbonate exhibits a catalytic activation effect at a relatively low temperature (800 ℃), enhancing the degree of graphitization of the product. Additionally, the chloride molten salts facilitate the free movement and assembly of the resulting product. The obtained mesoporous carbon exhibits a high specific surface area and pore volume, with a uniform pore size of 5.3 nm, making it suitable for aqueous electrolyte energy storage. It also features a low defect density. When applied as an electrode material for supercapacitors, the mesoporous carbon demonstrates excellent electrochemical performance at high current densities, outperforming the commercial supercapacitor-grade activated carbon YP-80F. The product’s high specific surface area and pore volume, suitable pore width, local order, and graphene structure enable rapid charge/discharge behaviour in aqueous electrolytes. Therefore, the prepared mesoporous carbon shows potential as a supercapacitor electrode, exhibiting excellent specific capacitance and capacitance retention performance.
Keywords: magnesiothermic reduction; mesoporous carbon; supercapacitor; molten salt
参考文献(References)
[1]KOBINA SAM D, LI H, XU Y T, et al. Porous carbon fabrication techniques: a review[J]. Journal of Industrial and Engineering Chemistry, 2024, 135: 17-42.
[2]FOROUZANDEH P, KUMARAVEL V, PILLAI S C. Electrode materials for supercapacitors: a review of recent advances[J]. Catalysts, 2020, 10(9): 969.
[3]SHI M, LIU X, JIA H, et al. Activation-self-activation craft for one-step synthesis of go-inbuilt mesopore-dominated N-doped hierarchical porous carbon in capacitive deionization capture of Ni(II)[J]. Separation and Purification Technology, 2024, 330: 125354.
[4]付时辉, 李圆, 王延青. 硼氮掺杂多孔碳电极材料的制备及其储能性能[J]. 中国粉体技术, 2024, 30(6): 27-40.
FU S, LI Y, WANG Y Q. Preparation and energy storage performance of boron-nitrogen-doped porous carbon electrode materials[J]. China Powder Science and Technology, 2024, 30(6): 27-40.
[5]LIU Z D, DUAN C P, DOU S M, et al. Ultrafast porous carbon activation promises high-energy density supercapacitors[J]. Small, 2022, 18(23): 2200954.
[6]ADELHELM P, HU Y S, CHUENCHOM L, et al. Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates[J]. Advanced Materials, 2007, 19(22): 4012-4017.
[7]PHAM V H, WANG C J, GAO Y, et al. Synthesis of microscopic 3D graphene for high-performance supercapacitors with ultra-high areal capacitance[J]. Small Methods, 2024, 8(9): e2301426.
[8]NANAJI K, SARADA B V, VARADARAJU U V, et al. A novel approach to synthesize porous graphene sheets by exploring KOH as pore inducing agent as well as a catalyst for supercapacitors with ultra-fast rate capability[J]. Renewable Energy, 2021, 172: 502-513.
[9]LI X J, WANG X J, HU X S, et al. Direct conversion of CO2 to graphene via vapor-liquid reaction for magnesium matrix composites with structural and functional properties[J]. Journal of Magnesium and Alloys, 2023, 11(4): 1206-1212.
[10]DYJAK S, KICIŃSKI W, NOREK M, et al. Hierarchical, nanoporous graphenic carbon materials through an instant, self-sustaining magnesiothermic reduction[J]. Carbon, 2016, 96: 937-946.
[11]FECHER N, FELLINGER T P, ANTONIETTI M. “Salt templating”: a simple and sustainable pathway toward highly porous functional carbons from ionic liquids [J]. Advanced Materials, 2013, 25(1): 75-79.
[12]FECHLER N, ZUSSBLATT N P, ROTHE R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials, 2016, 28(6): 1287-1294.
[13]ZHENG C H, ZHANG G P, WANG S S, et al. Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction[J]. Journal of Alloys and Compounds, 2021, 875: 159974.
[14]YE B L, FAN C, HAN Y J, et al. Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction[J]. Journal of the American Ceramic Society, 2020, 103(9): 4738-4741.
[15]刘家良, 韩兵强, 张锦化, 等. 熔盐辅助硅热还原法制备二硼化钛粉体[J]. 中国粉体技术, 2022, 28(4): 118-124.
LIU J L, HAN B Q, ZHANG J H, et al. Preparation of titanium diboride powder by molten salt assisted silicon thermal reduction method[J]. China Powder Science and Technology, 2022, 28(4): 118-124.
[16]ZHANG Z M, LU X C, YAN Y. Preparation of RE-containing magnesium alloys via molten-salt-mediated magnesiothermic reduction[J]. Journal of Magnesium and Alloys, 2023, 11(3): 981-990.
[17]FU Y Z, ZHANG Z M, LU X C, et al. Preparation of Mg-Nd alloys by magnesiothermic reduction in molten salt[J]. Metallurgical and Materials Transactions B, 2022, 53(1): 617-626.
[18] FU Y Z, ZHANG Z M, LU X C, et al. Synergistic interaction between NdCl3 and NdF3 in magnesiothermic reduction process[J]. Metallurgical and Materials Transactions B, 2023, 54(4): 1675-1686.
[19]ATHANASIOU M, SAMARTZIS N, SYGELLOU L, et al. High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors[J]. Carbon, 2021, 172: 750-761.
[20]DU X H, LIN Z W, ZHANG Y K, et al. Microstructural tailoring of porous few-layer graphene-like biochar from kitchen waste hydrolysis residue in molten carbonate medium: structural evolution and conductive additive-free supercapacitor application[J]. Science of the Total Environment, 2023, 871: 162045.
[21]ZHAN Y B, ZHOU H M, GUO F Q, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors[J]. Journal of Energy Storage, 2021, 34: 102180.
[22]YANG Y, MA Y P, LU C C, et al. Molten salt technique for the synthesis of carbon-based materials for supercapacitors[J]. Green Chemistry, 2023, 25(24): 10209-10234.
[23]FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[24]HAN T L, SUN B S, LI Q K, et al. Scalable synthesis and electrochemical performance of mesoporous graphene from calcium carbonate by magnesiothermic reaction[J]. Progress in Natural Science: Materials International, 2022, 32(3): 289-295.
[25]LI X J, WANG X J, HU X S, et al. Direct conversion of CO2 to graphene via vapor–liquid reaction for magnesium matrix composites with structural and functional properties[J]. Journal of Magnesium and Alloys, 2023, 11(4): 1206-1212.
[26]JALALABADI T, WU J, MOGHTADERI B, et al. A new approach to turbostratic carbon production via thermal salt-assisted treatment of graphite[J]. Fuel, 2023, 348: 128489.
[27]LUONG D X, BETS K V, ALGOZEEB W A, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651.
[28]ATHANASIOU M, SAMARTZIS N, SYGELLOU L, et al. High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors[J]. Carbon, 2021, 172: 750-761.
[29]CHANG L, WEI W, SUN K, et al. 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capac-itance at high current density[J]. Journal of Materials Chemistry A, 2015, 3(19): 10183-10187.
[30]ZHANG Z J, CHEN X Y, XIE D H, et al. Temperature-dependent structure and electrochemical performance of highly nanoporous carbon from potassium biphthalate and magnesium powder via a template carbonization process[J]. Journal of Materials Chemistry A, 2014, 2(25): 9675-9683.
[31]WEI Z Y, ZHAO Q, HE M Y, et al. Self-propagating high-temperature synthesis of porous graphene by magnesiothermic reaction as high-performance electrochemical electrode material[J]. Journal of Alloys and Compounds, 2022, 900: 163552.
[32]XIA M W, CHEN W, WU J, et al. The critical role of anions in the porous biochar structure and potassium release during the potassium-assisted pyrolysis process[J]. Green Chemistry, 2021, 23(23): 9589-9599.