陈孟达, 李彬彬, 毋伟
北京化工大学 化学工程学院, 北京100029
引用格式:
陈孟达, 李彬彬, 毋伟. 氧化铝辅助制备氮化硼纳米片及其应用[J]. 中国粉体技术, 2026, 32(2): 1-13.
CHEN Mengda, LI Binbin, WU Wei. Aluminum oxide-assisted preparation of boron nitride nanosheets and their applications[J]. China Powder Science and Technology, 2026, 32(2): 1-13.
DOI:10.13732/j.issn.1008-5548.2026.02.006
收稿日期: 2025-04-18, 修回日期: 2025-11-04,上线日期: 2025-12-10。
基金项目: 国家自然科学基金项目,编号 :22478026。
第一作者: 陈孟达(2000—),男,硕士生,研究方向为六方氮化硼的剥离制备及应用。E-mail:cmd6736@163.com。
通信作者: 毋伟(1966—),男,教授,博士,博士生导师,研究方向为化工新型材料的制备及应用。E-mail:wuwei@mail.buct.edu.cn。
摘要: 【目的】 开发一种绿色、低成本、可规模化制备六方氮化硼纳米片(boron nitride nanosheets,BNNSs)的方法,研究BNNSs及其复合材料对环氧树脂(epoxy resin, EP)导热性能的影响。 【方法】 采用固-液复合剥离工艺,在固相剥离(预处理)与液相剥离的协同作用下,以改性的氧化铝(aluminum oxide, Al2O3)作为液相剥离辅助剂,在水相体系中制备BNNSs,同时获得BNNSs-Al2O3复合产品,并将其作为填料填充至EP中,制备BNNSs-Al2O3-EP薄膜。 【结果】 经硬脂酸(stearic acid, SA)改性的Al2O3可以显著提升剥离的产率,在较优的工艺条件下,制备的BNNSs产率达17.2%,平均粒径为320 nm,平均层数为5;对于所制备的BNNSs-Al2O3-SA-EP薄膜,当添加质量分数为30%的填料时,导热系数达1.25 W·m-1·K-1,较Al2O3-EP的提高89%,较h-BN-EP的提高67%,较纯EP的提高681%。 【结论】 在固-液复合剥离工艺中,以SA改性的Al2O3作为液相剥离辅助剂,不仅可实现BNNSs的高产率制备,还可以有效地将BNNSs和Al2O3进行复合,协同增强环氧树脂基体的导热性能。
关键词: 氮化硼纳米片; 氧化铝; 球磨剥离; 环氧树脂薄膜; 导热性能
Abstract
Objective In recent years, with the rapid development of electronic devices toward higher integration and miniaturization, the demand for efficient thermal management has increased significantly, making effective heat dissipation one of the primary research directions. Hexagonal boron nitride nanosheets (BNNSs), owing to their excellent thermal conductivity and electrical insulation properties, are ideal thermal management materials. However, current BNNS preparation techniques suffer from high costs, low yields, and considerable pollution. Therefore, developing a scalable BNNS production method for thermal management applications holds substantial practical significance.
Methods A composite exfoliation method was employed. Under the synergistic effect of solid-phase (pretreatment) and liquid-phase exfoliation, high-yield BNNSs were prepared in an aqueous system with stearic acid (SA)-modified aluminum oxide (Al2O3) as a liquid-phase exfoliation additive. This process simultaneously produced the BNNSs-Al2O3-SA product (hereinafter referred to as BNNSs-Al2O3), which was then used as a composite filler and filled into epoxy resin (EP) to fabricate BNNSs-Al2O3-EP composites.
Results and Discussion During the liquid-phase ball-milling exfoliation process, Al2O3 not only acted as an exfoliation additive by providing mechanical grinding but also exhibited excellent amphiphilicity due to SA modification. This enabled it to continuously attach onto the surfaces of newly exfoliated BNNSs, preventing repeated stacking of delaminated BN flakes and thereby significantly improving the exfoliation efficiency. Under optimized conditions (25% Al2O3-SA addition, particle size of 58.68 µm, ball-milling time of 5 h, and a ball-to-material ratio of 40:1), the prepared BNNSs achieved a yield of 17.2%, with an average lateral size of 320 nm and an average of 5 layers. Furthermore, when the filler addition reached 30% (mass fraction), the thermal conductivity of BNNSs-Al2O3-EP increased to 1.25 W·m-1·K-1, 89% higher than Al2O3-EP, 67% higher than hexagonal (h)-BN-EP, and 681% higher than pure EP.
Conclusions The solid-liquid phase composite exfoliation method enables high-yield BNNSs production while avoiding post-treatment procedures and achieving effective BNNSs-Al₂O₃ integration. The resulting product could be directly used as a composite filler, synergistically enhancing the thermal conductivity of the EP matrix. This composite exfoliation method provides a novel, green, low-cost, and scalable approach for BNNSs fabrication.
Keywords: boron nitride nanosheets; aluminum oxide; ball-milling exfoliation; epoxy resin films; thermal conductivity
参考文献(References)
[1]KIM S, KIM H, KING W P, et al. Optimal phase change material integration strategies for maximizing electronic device reliability[J]. Applied Thermal Engineering, 2025, 267: 125736.
[2]LI W B, ZENG H X, HUANG L, et al. A review of terahertz solid-state electronic/optoelectronic devices and communication systems[J]. Chinese Journal of Electronics, 2025, 34(1): 26-48.
[3]ATINAFU D G, YUN B Y, KIM Y U, et al. Nanopolyhybrids: materials, engineering designs, and advances in thermal management[J]. Small Methods, 2023, 7(6): 2201515.
[4]LEE W, KIM J. A comprehensive review of research on organic-based phase-change thermal interface materials for thermal management of electric devices: methods, performance, and applications[J]. Polymer Testing, 2025, 142: 108677.
[5]XIE L, WANG X C, BAI Y G, et al. Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges[J]. Nano-Micro Letters, 2025, 17(1): 146.
[6]HU S M, WANG L, YUAN Z X, et al. Polymer-based smart fibers and textiles for wearable electronics[J]. Science China Technological Sciences, 2024, 68(1): 1110201.
[7]YI G Q, HENDERSON L C, LI J L, et al. Thermally conductive composites as polymer heat exchangers for water and energy recovery: from materials to products[J]. Applied Thermal Engineering, 2025, 268: 125845.
[8]UDDIN M M, KABIR M H, ALI M A, et al. Graphene-like emerging 2D materials: recent progress, challenges and future outlook[J]. RSC Advances, 2023, 13(47): 33336-33375.
[9]GUO L Y, FENG L, HUANG C Y, et al. Recyclable and highly thermally conductive nanocomposite with binary thermally conductive networks constructed from boron nitride nanoribbons and nanosheets[J]. Composites Science and Technology, 2025, 259: 110954.
[10]ZHANG S F, ZHU X Y, SHE Y F, et al. Highly exfoliated boron nitride nanosheets via carboxyl nanocellulose for thermally conductive nanocomposite films[J]. ACS Applied Nano Materials, 2024, 7(3): 2971-2982.
[11]ZHANG Y, WANG J W, MA Y J, et al. Multifunctional boron nitride nanosheets/fluorinated-polyimide composites with ultra-low dielectric constant and high thermal conductivity[J]. Polymer Composites, 2024, 45(8): 7661-7672.
[12]ZHANG T D, WANG C H, LIU G, et al. High thermal conductivity and low dielectric loss of three-dimensional boron nitride nanosheets/epoxy composites[J]. Composites Communications, 2024, 50: 102007.
[13]ZHANG Y, LI Y F, LEI Q X, et al. A vertically aligned anisotropic boron nitride nanosheet (BNNSs)/polyvinyl alcohol (PVA) composite aerogel with ultra-low thermal conductivity prepared by the prefreeze-freeze-drying method for efficient thermal management[J]. Materials Today Communications, 2023, 36: 106742.
[14]LI L H, CERVENKA J, WATANABE K, et al. Strong oxidation resistance of atomically thin boron nitride nanosheets[J]. ACS Nano, 2014, 8(2): 1457-1462.
[15]AN L L, YU Y L, CAI Q R, et al. Hexagonal boron nitride nanosheets: preparation, heat transport property and application as thermally conductive fillers[J]. Progress in Materials Science, 2023, 138: 101154.
[16]SATO K, IMAI Y. The optimal dimensions of hexagonal-boron nitride nanosheets as thermally conductive fillers: the thinner the better?[J]. Current Opinion in Solid State and Materials Science, 2024, 29: 101143.
[17]王友昌, 张晓静, 朱宇薇, 等. 石墨烯基水性导电油墨的制备及其在低温热管理中的应用[J]. 中国粉体技术, 2024, 30(6): 15-26.
WANG Y C, ZHANG X J, ZHU Y W, et al. Preparation of graphene-based water-based conductive ink and its application in low-temperature thermal management[J]. China Powder Science and Technology, 2024, 30(6): 15-26.
[18]PACILÉ D, MEYER J C, GIRIT, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes[J]. Applied Physics Letters, 2008, 92(13): 133107.
[19]FENG Y H, ZHANG Y M, LIU J P, et al. Large-scale synthesis h-BN films on copper-nickel alloy by atmospheric pressure chemical vapor deposition[J]. Crystals, 2022, 12(7): 985.
[20]LI H J, WANG S X, KONG X Y, et al. Polyphenol-functionalized boron nitride nanosheet-reinforced sustainable polyimide dielectric films for antenna-in-package applications[J]. ACS Applied Electronic Materials, 2024, 6(4): 2667-2676.
[21]SANG X X, BAN L L, SHI X B, et al. Eco-friendly production of boron nitride nanosheets via deep eutectic solvents and their application in enhancing thermal conductivity of PVDF composites[J]. Langmuir, 2024, 40(19): 10107-10114.
[22]TONG X, ZOU Y M, DONG X X, et al. Exfoliation of boron nitride nanosheets by liquid phase method based on deep eutectic solvents and their thermal management application[J]. Polymer Composites, 2025, 46(3): 2573-2583.
[23]SUN W L, MENG Y, FU Q R, et al. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9881-9888.
[24]SONG F E, LIU J Y, ZHAO R X, et al. Formation mechanisms of hexagonal boron nitride nanosheets in solvothermal exfoliation[J]. Langmuir, 2023, 39(4): 1619-1628.
[25]BIE Y G, MIYASE T, ARAO Y. Production of high-aspect-ratio boron nitride nanosheets via oxygen doping and exfoliation by micro fluidization[J]. Journal of Materials Science, 2023, 58(46): 17512-17526.
[26]SHAN Q, SHI X F, WANG X Y, et al. Preparation of functionalized boron nitride nanosheets by high-gravity liquid phase exfoliation technology[J]. Chemical Engineering and Processing:Process Intensification, 2021, 169: 108602.
[27]YOO J B, HAN J H, CHOI S H, et al. Emission characteristics of boron nitride coated carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1/2/3/4): 180-181.
[28]SHI X F, WANG K H, TIAN J, et al. Few-layer hydroxyl-functionalized boron nitride nanosheets for nanoscale thermal management[J]. ACS Applied Nano Materials, 2020, 3(3): 2310-2321.
[29]YAN D, LI J, ZAHID M, et al. Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets[J]. Applied Surface Science, 2023, 609: 155308.
[30]ZHOU L, ZHANG B, LI F Z, et al. Preparation of boron nitride nanosheets by glucose-assisted ultrasonic cavitation exfoliation[J]. Nanoscale Advances, 2023, 5(23): 6582-6593.
[31]汤云祥, 张亚男, 孔令恒, 等. Ni纳米颗粒负载Al2O3纳米片的光热耦合催化CO2甲烷化性能研究[J]. 聊城大学学报(自然科学版), 2025, 38(4): 587-595.
TANG Y X, ZHANG Y N, KONG L H, et al.Ni nanoparticles supported Al2O3 nanosheet for photo-thermal catalytic CO2 methanation[J]. Journal of Liaocheng University (Natural Science Edition), 2025, 38(4): 587-595.
[32]CHEN S H, XU R Z, LIU J M, et al. Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation[J]. Advanced Materials, 2019, 31(10): 1804810.
[33]ZHAO H R, DING J H, ZHAO C C, et al. Sustainable mass production of ultrahigh-aspect-ratio hexagonal boron nitride nanosheets for high-performance composites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4633-4642.