ISSN 1008-5548

CN 37-1316/TU

最新出版

MoS2负载CdS基复合材料的可见光催化析氢性能

Visible light-driven photocatalytic hydrogen evolution performance of MoS2-loaded CdS-based composite materials


陈芳1, 郭佳瑜1, 李浩1, 魏宇学1, 何东2, 张平3, 张成华1, 孙松1

1.安徽大学 化学化工学院, 安徽 合肥 230601; 2.芜湖赛宝信息产业技术研究院有限公司, 安徽 芜湖 241003;3.安徽碳鑫科技有限公司, 安徽 淮北 235141


引用格式:

陈芳, 郭佳瑜, 李浩, 等. MoS2负载CdS基复合材料的可见光催化析氢性能[J]. 中国粉体技术, 2026, 32(3): 1-12.

CHEN Fang, GUO Jiayu, LI Hao, et al. Visible light-driven photocatalytic hydrogen evolution performance of MoS2-loaded CdS-based composite materials[J]. China Powder Science and Technology, 2026, 32(3): 1-12.

DOI:10.13732/j.issn.1008-5548.2026.03.014

收稿日期: 2025-07-29, 修回日期: 2025-11-12,上线日期: 2025-12-06。

基金项目: 国家自然科学基金项目,编号:22179001;安徽省高校杰出青年科研项目,编号:2022AH020007;安徽高校协同创新项目,编号:GXXT-2023-009;安徽省高等学校自然科学基金项目,编号:2023AH050114;安徽博士后科研项目,编号:2024C893。

第一作者: 陈芳(1994—),女,助理实验师,主要研究方向为催化与理论计算。E-mail: fchen2021@ahu.edu.cn。

通信作者: 孙松(1982—),男,教授,博士,博士生导师,安徽省“百人计划”、安徽省高校杰出青年项目、安徽省“双创团队领军人才”获得者,研究方向为催化材料与机制。E-mail: suns@ustc.edu.cn;

通信作者:张成华(1975—)男,教授,博士,博士生导师,研究方向为催化材料与催化反应过程。E-mail: zhangchh@sxicc.ac.cn。


摘要: 【目的】 通过比较水热法、光沉积法2种不同的合成方法对二硫化钼(MoS2)负载硫化镉(CdS)基复合材料的光催化析氢性能的影响,深入解析制得的复合材料的微观结构、界面相互作用与可见光催化析氢性能之间的构效关系,为实现高效设计光催化制氢材料提供数据基础。【方法】 以CdS作为基底,MoS2为助催化剂,分别采用水热法、光沉积法制得MoS2-CdS-H、MoS2-CdS-P复合材料;对MoS2-CdS-H、MoS2-CdS-P、CdS、MoS2样品的物相组成、界面电子结构、微观形貌、介孔结构、比表面积、孔径分布进行表征,分析样品的光学性质和产氢性能,进行循环使用稳定性实验,揭示产氢性能最优的复合材料中促进光生电荷分离与传输的内在机制。【结果 MoS2-CdS-P、CdS、MoS2相比,MoS2-CdS-H具有更高的结晶度、较强的界面相互作用、清晰的折叠边缘结构、优异的比表面积、较大的孔容以及适中的介孔结构。MoS2-CdS-H在可见光区展现出较强的光吸收能力,在硫化钠(Na2S)-亚硫酸钠(Na2SO3)溶液体系中,MoS2-CdS-H的光催化产氢量最高,达到1509.88 µmol,而且在4次循环使用后仍保持良好的产氢活性;MoS2-CdS-H的瞬态光电流响应特性最强,光电流密度最大可至3.1 µA/cm2;MoS2-CdS-H阻抗的虚部与实部的关系曲线的曲率最大,阻抗值较小。【结论 热法制得的MoS2-CdS-H在光催化反应中具有丰富的活性位点,增加了CdS、MoS2之间的界面接触面积,有助于形成多维电子传输通道,促进了光生电子-空穴对的有效分离与迁移,加快了析氢反应的表面动力学过程。MoS2-CdS-H具有较高的光吸收效率,满足工程应用对催化剂耐久性的基本要求。

关键词 MoS2负载CdS基复合材料; 水热法; 光沉积法; 界面相互作用; 光催化析氢


Abstract

Objective A comparison is conducted on the effects of two distinct synthesis methods—hydrothermal and photodeposition—on the photocatalytic hydrogen evolution performance of MoS2-loaded CdS-based composites. Based on this, the structure-performance relationships among microstructure, interfacial interactions, and visible-light photocatalytic hydrogen evolution performance of the synthesized composites are thoroughly analyzed. The research provides a data foundation for the rational design of efficient photocatalytic materials for hydrogen production.

Methods Using CdS as the substrate and MoS2 as the co-catalyst, composite materials MoS2-CdS-H and MoS2-CdS-P were synthesized via hydrothermal and photodeposition methods, respectively. All samples (MoS2-CdS-H, MoS2-CdS-P, CdS, and MoS2) were characterized for their chemical composition, interfacial electronic structure, microstructure, mesoporous structure, specific surface area, and pore size distribution. Their optical properties and hydrogen evolution performance were analyzed. Cyclic stability tests were conducted to elucidate the intrinsic mechanisms responsible for photoinduced charge separation and transport in the composite materials exhibiting optimal hydrogen production performance.

Results and Discussion Compared to MoS2-CdS-P, CdS, and MoS2, the MoS2-CdS-H exhibited higher crystallinity, stronger interfacial interactions, distinct folded-edge structures, a larger specific surface area, higher pore volume, and a moderate mesoporous structure. These microstructural advantages provided abundant potential active sites for photocatalytic reactions, increased the interfacial contact area between CdS and MoS2, and facilitated the formation of multidimensional electron transport channels. MoS2-CdS-H demonstrated stronger visible-light absorption, indicating a synergistic effect of the CdS-MoS2 composites in enhancing light absorption efficiency, which contributed to its improved photocatalytic activity. In the Na2S-Na2SO3 solution system, MoS2-CdS-H achieved the highest photocatalytic hydrogen evolution amount of 1 509.88 µmol and maintained excellent hydrogen evolution activity even after four cycles, meeting the fundamental durability requirements for catalysts in engineering applications. The MoS2-CdS-H composite exhibited the strongest transient photocurrent response, with a maximum photocurrent density of 3.1 µA/cm2. It also demonstrated the highest curvature in the relationship curve between the imaginary and real parts of its impedance, indicating lower impedance values. The enhanced interfacial effect between MoS2 and CdS promoted efficient separation and migration of photogenerated electron-hole pairs, accelerating the surface kinetics of the hydrogen evolution reaction. This interfacial effect is the key factor driving the performance enhancement.

Conclusion The hydrothermal method enables the uniform loading and strong binding of ultrathin MoS2 nanosheets on the CdS surface, creating effective interfacial contact. This significantly improves the separation and migration efficiency of photogenerated carriers and accelerates the kinetics of the surface hydrogen evolution reaction. Additionally, the three-dimensional assembly strategy offers a universal reference for enhancing the performance of other conventional semiconductor photocatalytic systems.


参考文献(References)

[1]HASSAN N S, JALIL A A, RAJENDRAN S, et al. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society[J]. International Journal of Hydrogen Energy, 2024, 52: 420-441.

[2]HAMEED S, COMINI E. Methane conversion for hydrogen production: technologies for a sustainable future[J]. Sustainable Energy & Fuels, 2024, 8(4): 670-683.

[3]KLATZER T, BACHHIESL U, WOGRIN S, et al. Ramping up the hydrogen sector: an energy system modeling framework[J]. Applied Energy, 2024, 355: 122264.

[4]DHIMAN V, SINGH S, SRIVASTAVA V, et al. Nanomaterials for photo-electrochemical water splitting: a review[J]. Environmental Science and Pollution Research, 2025, 32(22): 13299-13312.

[5]NASIR J A, REHMAN Z U, ALI SHAH S N, et al. Recent developments and perspectives in CdS-based photocatalysts for water splitting[J]. Journal of Materials Chemistry A, 2020, 8(40): 20752-20780.

[6]CHEN H Y, YE K, ZHANG W Y, et al. Nickel-based bifunctional cocatalyst to enhance CdS photocatalytic hydrogen production[J]. Langmuir, 2023, 39(51): 18935-18945.

[7]LYU Z G, LI W P, CHENG X, et al. Constructing internal electric field in CdS via Bi, Ni co-doping strategy for enhanced visible-light H2 production[J]. Applied Surface Science, 2021, 556: 149758.

[8]DANG Y Y, LUO L, WANG W, et al. Improving the photocatalytic H2 evolution of CdS by adjusting the (002) crystal facet[J]. The Journal of Physical Chemistry C, 2022, 126(3): 1346-1355.

[9]PRASAD C, MADKHALI N, WON J S, et al. CdS based heterojunction for water splitting: a review[J]. Materials Science and Engineering: B, 2023, 292: 116413.

[10]DONG J, DUAN L X, WU Q, et al. Facile preparation of Pt/CdS photocatalyst by a modified photoreduction method with efficient hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2139-2147.

[11]CEBADA S, SOTO E, MOTA N, et al. Effect of photodeposition conditions on Ni-CdS photocatalysts and its role in the photoactivity for H2 production from ethanolic solutions[J]. International Journal of Hydrogen Energy, 2020, 45(40): 20536-20548.

[12]ZHAO H M, FU H T, YANG X H, et al. MoS2/CdS rod-like nanocomposites as high-performance visible light photocatalyst for water splitting photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8247-8260.

[13]DOU Z L, ZHOU H R, KONG F H, et al. PdS cluster promotes photocatalytic coproduction of hydrogen and biomass-based monomers[J]. ACS Catalysis, 2024, 14(15): 11705-11712.

[14]TONG R, NG K W, WANG X N, et al. Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production[J]. Journal of Materials Chemistry A, 2020, 8(44): 23202-23230.

[15]KADAM S R, GOSAVI S W, KALE B B, et al. Unique CdS@MoS2 core shell heterostructure for efficient hydrogen generation under natural sunlight[J]. Scientific Reports, 2019, 9: 12036.

[16]ZHOU Q Q, WANG Z Y, YUAN H D, et al. Rapid hydrogen adsorption-desorption at sulfur sites via an interstitial carbon strategy for efficient HER on MoS2[J]. Applied Catalysis B: Environmental, 2023, 332: 122750.

[17]YANG M Q, HAN C, XU Y J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27234-27246.

[18]DI T M, ZHANG L Y, CHENG B, et al. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production[J]. Journal of Materials Science & Technology, 2020, 56: 170-178.

[19]JAYAN G, ELIAS L, ANIL A, et al. Step-by-step tuning of morphology and band gap of ZnS/MoS2 photocatalyst for enhanced visible light to hydrogen fuel conversion[J]. International Journal of Hydrogen Energy, 2024, 51: 1375-1386.

[20]HAN B, LIU S Q, ZHANG N, et al. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light[J]. Applied Catalysis B: Environmental, 2017, 202: 298-304.

[21]ZENG G X, MIAO H H, WU J B, et al. Ingenious regulation and activation of sites in the 2H-MoS2 basal planes by oxygen incorporation for enhanced photocatalytic hydrogen evolution of CdS[J]. Chemical Engineering Journal, 2024, 499: 156367.

[22]WU J X, QIAO P Z, AN P, et al. Modulating interfacial Mo-S chemical-bond enable highly-efficient charge transfer for promoted visible-light-driven photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environment and Energy, 2025,377: 125481.

[23]SUN B T, LIANG Z Q, QIAN Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7257-7269.

[24]刘炜, 张敏, 朱照琪, 等. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353.

LIU W, ZHANG M, ZHU Z Q, et al. Preparation and current applications of black titanium dioxide nanomaterials[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353.

[25]LIN Q Z, LUO C H, JIN D, et al. Precise tuning of bilayer ultrasmall MoS2 featuring inhibition of carrier recombination and fast surface chemistry for green H2 evolution[J]. Small, 2024, 20(5): 2305888.

[26]HUANG T X, CONG X, WU S S, et al. Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction[J]. Nature Catalysis, 2024, 7(6): 646-654.

[27]QIN Y B, ZHANG L L, YANG B C, et al. Molten salt synthesis of 1T/2H mixed phase MoS2 for boosting photocatalytic H2 evolution via Schottky junction under EY-sensitized system[J]. Journal of Colloid and Interface Science, 2024, 660: 617-627.

[28]SUN Q H, XIE W J, ZHENG B, et al. Enhanced oxygen evolution reaction activity via multi-channel charge transfer in nitrogen-doped carbon-encapsulated FeNi/Mo2C heterointerfaces with engineered built-in electric fields[J]. Journal of Materials Science & Technology, 2026, 243: 181-191.