向清山1, 王新哲2, 周琪2, 连一仁1, 牛江宇1, 孙树堂1, 高旭东1,王智鹏1, 庄大杰1, 孙洪超1, 李国强1
1.中国辐射防护研究院, 太原 030006; 2.国家国防科技工业局 核技术支持中心, 北京 100071
引用格式:
向清山, 王新哲, 周琪, 等. 温度对由泄漏放射性液体生成的气溶胶颗粒的释放行为的影响[J]. 中国粉体技术, 2026, 32(3): 1-11.
XIANG Qingshan, WANG Xinzhe, ZHOU Qi, et al. Influence of temperature on release behavior of aerosol particles generated by leaked radioactive liquid[J]. China Powder Science and Technology, 2026, 32(3): 1-11
DOI:10.13732/j.issn.1008-5548.2026.03.004
收稿日期: 2025-06-05, 修回日期: 2025-11-05,上线日期: 2025-12-06。
基金项目: 国防科工局核技术支持中心项目,编号:HNKF202230(36)。
第一作者: 向清山(2000—),男(土家族),硕士研究生,研究方向为放射性运输容器智能化无损检测技术及放射性气溶胶泄漏机理研究。E-mail:2843050003@qq.com。
通信作者: 王新哲(1989—),男,副研究员,硕士,研究方向为先进核设施核安全监管。E-mail:13974350319@163.com。
摘要: 【目的】 为了给核燃料循环设施放射性液体泄漏的源项评价提供基础数据,以硝酸铈溶液作为放射性溶液的非放射性替代物,分析在不同温度条件下由破口泄漏的硝酸铈溶液形成的气溶胶颗粒的释放行为,建立温度与释放分数之间的数量关系。【方法】 在温度不同的条件下进行硝酸铈溶液泄漏模拟实验,研究各粒径区间级别的气溶胶颗粒的粒子数浓度、质量浓度随时间的变化规律;依据气溶胶颗粒浓度的微分方程,绘制在溶液温度不同的条件下气溶胶颗粒质量浓度和时间的关系曲线,计算小孔喷射泄漏率、平衡状态下气溶胶颗粒的质量浓度、人体可吸入气溶胶颗粒生成率以及释放分数,确定释放分数与温度之间的函数关系,最后进行实验误差分析。【结果】 在溶液温度相同的条件下,各粒径区间级别的气溶胶颗粒的粒子数浓度和质量浓度均随时间的增加由快速上升逐渐趋于平衡状态;硝酸铈溶液温度越高,同一粒径区间级别的气溶胶颗粒的粒子数浓度和质量浓度的上升速率越快、平衡状态时的峰值越高;小孔喷射泄漏率、平衡时气溶胶颗粒的质量浓度、人体可吸入气溶胶颗粒生成率及释放分数均随着溶液温度的升高而增大;硝酸铈溶液温度分别为40、 50、 60、 70、 80、 88 ℃时,释放分数分别为2.99×10-5、4.41×10-5、5.40×10-5、8.23×10-5、1.147×10-4、1.632×10-4。【结论】 释放分数与硝酸铈溶液温度的三次方呈线性关系,释放分数量级为10-5~10-4。
关键词: 温度; 放射性液体泄漏; 气溶胶颗粒; 质量浓度; 释放分数
Abstract
Objective Cerium nitrate solution was used as a non-radioactive substitute for radioactive solutions. This study investigated the release behavior of aerosol particles generated during the leakage of cerium nitrate solution through breaches under different temperature conditions. A quantitative relationship between temperature and release fraction was established. The results provide fundamental data for the source term evaluation of radioactive liquid leakage in nuclear fuel cycle facilities.
Methods Referencing to the standard solution leakage experimental platform developed by the Pacific Northwest National Laboratory (PNNL), an experimental system was built. Leakage simulations were performed under different cerium nitrate solution temperatures. The particle size distribution, number and mass concentrations of aerosol particles were monitored online via a laser particle size analyzer and an electrical low-pressure impactor (ELPI). The temporal variation patterns of number and mass concentrations in each particle size range under different temperature conditions of cerium nitrate solution were analyzed. Based on the differential equation of aerosol particle concentration, fitting curves of aerosol particle mass concentration versus time under different solution temperatures were plotted. The orifice jet leakage rate, equilibrium mass concentration of aerosol particles, and generation rate and release fraction of inhalable aerosol particles were calculated. The functional relationship between release fraction and temperature was determined. Finally, experimental error analysis was conducted.
Results and Discussion Under the same solution temperature conditions, the number and mass concentrations of aerosol particles in each particle size range gradually stabilized from a rapid rise phase to a steady state over time. With increasing solution temperature, both the rate of increase and the peak values of the number and mass concentrations of aerosol particles rose correspondingly. The orifice jet leakage rate, equilibrium mass concentration of aerosol particles, and generation rate and release function of inhalable aerosol particles all increased with solution temperature. At cerium nitrate solution temperatures of 40, 50, 60, 70, 80, and 88 ℃, the orifice jet leakage rates were 7.38, 7.43, 7.50, 7.52, 7.63, and 7.85 g/s, respectively, the generation rates of inhalable aerosol particles were 0.221, 0.328, 0.405, 0.619, 0.875, and 1.281 mg/s, respectively, and the release fractions were 2.99×10-5, 4.41×10-5, 5.40×10-5, 8.23×10-5, 1.147×10-4, and 1.632×10-4, respectively.
Conclusion The release fraction showed a linear relationship with the cube of cerium nitrate solution temperature, with magnitude on the order of 10-5 to 10-4. The obtained release fractions can be used for risk control and source term estimation for radioactive solution leakage accidents in nuclear facilities, providing important reference value for the analysis and evaluation of such leakage accidents.
参考文献(References)
[1]朱敏, 毛汉源, 杜良, 等. 高温条件下铀气溶胶生成规律研究综述[J]. 兵器装备工程学报, 2021, 42(6): 1-5.
ZHU M, MAO H Y, DU L, et al. Review of studies on generation of uranium aerosols under high temperature[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 1-5.
[2]LIAN Y R, SUN H C, YANG H, et al. Experimental study on aerosol and gas emission of solvent fire accident in nuclear fuel cycle facility[J]. Nuclear Technology, 2023, 209(9): 1398-1404.
[3]杨延龙, 魏秀业, 赵雷雨, 等. 不同喷雾压力下雾化场气液两相流数值仿真[J]. 煤矿安全, 2017, 48(3): 25-27.
YANG Y L, WEI X Y, ZHAO L Y, et al. Numerical simulation of gas-liquid two-phase flow of atomizing field under different spraying pressure[J]. Safety in Coal Mines, 2017, 48(3): 25-27.
[4]WONG J J L, WONG A I C, XU Y Y, et al. Zein as a water insoluble excipient for spray dry encapsulation of hydrophilic bioactives[J]. Journal of Food Engineering, 2020, 283: 110054.
[5]CHIDEME N, DE VAAL P. Effect of liquid viscosity and surface tension on the spray droplet size and the measurement thereof[J]. Journal of Applied Fluid Mechanics, 2024, 17(12): 2652-2672.
[6]许赛, 李真成, 黄耀华, 等. 基于液体黏度及气液流量比调控实现散斑均匀细化[J]. 中国激光, 2025, 52(10): 86-93.
XU S, LI Z C, HUANG Y H, et al. Uniform refinement method for speckles based on liquid viscosity and air-liquid flow ratio control[J]. Chinese Journal of Lasers, 2025, 52(10): 86-93.
[7]SOW M, LEBLOIS Y, GENSDARMES F. Experimental study of aerosol release following liquid leaks of fission products concentrates simulants[J]. Nuclear Engineering and Design, 2019, 341: 46-55.
[8]SONI S K, KIRAR P K, KOLHE P, et al. Deformation and breakup of droplets in an oblique continuous air stream[J]. International Journal of Multiphase Flow, 2020, 122: 103141.
[9]ADE S S, CHANDRALA L D, SAHU K C. Size distribution of a drop undergoing breakup at moderate Weber numbers[J]. Journal of Fluid Mechanics, 2023, 959: A38.
[10]KANT K, BANERJEE R. Effect of density ratios on droplet breakup for Newtonian and power-law fluids[J]. International Journal of Multiphase Flow, 2023, 167: 104561.
[11]THUNIVUMANI G, GADGIL H. Dynamics of liquid sheet breakup in splash plate atomization[J]. Journal of Fluids Engineering, 2018, 140: 011205.
[12]KAMIN M N, KHARE P. The effect of Weber number on spray and vaporization characteristics of liquid jets injected in air crossflow[J]. Journal of Fluids Engineering, 2022, 144(6): 061108.
[13]MUDDAPUR A, SRIKRISHNA S, SUNDARARAJAN T. Spray dynamics simulations for pulsatile injection at different ambient pressure and temperature conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(4): 500-519.
[14]BAHR D W. Gas turbine combustion: alternative fuels and emissions[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(11): 116501.
[15]QIN Y M, YE J H, OHNO P, et al. Temperature-dependent viscosity of organic materials characterized by atomic force microscope[J]. Atmosphere, 2021, 12(11): 1476.
[16]薛炜宸, 陈静, 霍伟业, 等. 基于DoE实验设计的硝酸铈溶液雾化特性研究[J]. 节能技术, 2024, 42(1): 13-20.
XUE W C, CHEN J, HUO W Y, et al. Research on the atomization characteristics of cerium nitrate solution based on design of experiment[J]. Energy Conservation Technology, 2024, 42(1): 13-20.
[17]The United States Department of Energy. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities(Vol. I): analysis of experimental data[M]. Washington, D.C.: U.S. Department of Energy, 1994: DOE-HDBK-3010-94.
[18]ZHU M, MAO H Y, WANG Y J, et al. Study on the equivalence of metallic-cerium-simulated uranium-aerosol generation under fire[J]. Processes, 2023, 11(2): 419.
[19]李星苇. 大气压下固体颗粒物荷电特性研究[D]. 武汉: 华中科技大学, 2021.
LI X W. The research on charge characteristics of solid particles under atmospheric pressure[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[20]胡明皓, 郭猛, 王康, 等. 不同通风方式对室内气溶胶传播特性的影响[J]. 中国粉体技术, 2025, 31(2): 173-183.
HU M H, GUO M, WANG K, et al. Impact of different ventilation methods on transmission characteristics of indoor aerosols[J]. China Powder Science and Technology, 2025, 31(2): 173-183.
[21]齐志超, 王辉, 孙晓晖, 等. 放射性气溶胶同时荷电-凝并模型的开发[J]. 中国粉体技术, 2023, 29(6): 115-124.
QI Z C, WANG H, SUN X H, et al. Development of simultaneous charging and coagulation model for radioactive aerosols[J]. China Powder Science and Technology, 2023, 29(6): 115-124.
[22]顾芳, 杨娟, 王春勇, 等. 基于等效球形颗粒数的颗粒物质量浓度算法[J]. 光电子·激光, 2008, 19(1): 87-91.
GU F, YANG J, WANG C Y, et al. Aerosol mass concentration algorithm based on the number of equivalent spherical particles[J]. Journal of Optoelectronics·Laser, 2008, 19(1): 87-91.