安徽工业大学 冶金工程学院,安 徽 马鞍山 243000
王宇,吕杰,刘鹏飞,等. 原位负载稀土镱对氮化硅陶瓷烧结性能的影响[J]. 中国粉体技术,2026,32(1):1-11.
WANG Yu, LYU Jie, LIU Pengfei, et al. Effects of in-situ loaded rare earth Yb on sintering properties of silicon nitride ceramics[J]. China Powder Science and Technology,2026,32(1):1−11.
DOI:10.13732/j.issn.1008-5548.2026.01.010
收稿日期:2025-03-19,修回日期:2025-06-22,上线日期:2025-12-03。
基金项目:国家自然科学基金项目,编号:52074003。
第一作者简介:王宇(1999—),男,硕士生,研究方向为热压烧结制备Si3N4 陶瓷。E-mail:1643628160@qq. com。
通信作者简介:韩召(1977—),男,副教授,博士,博士生导师,研究方向为Si3N4 粉体制备及应用技术。E-mail:authan@163. com。
摘要:【目的】为了制备高性能的Si3N4陶瓷,研究原位负载稀土Yb对Si3N4陶瓷烧结性能的影响。【方法】将稀土金属Yb溶于液氨中,通过溶解-析出机制将Yb包覆于Si3N4粉体表面,经过热处理得到YbN@Si3N4核壳结构粉体,并对该粉体进行热压烧结;分析负载稀土金属Yb的Si3N4的粉体形貌和元素分布,并研究负载金属Yb的含量对Si3N4陶瓷致密度、显微结构和导热性能的影响。【结果】通过热压烧结,成功制备出高性能的Si3N4陶瓷;随着金属Yb的质量分数的增加,Si3N4陶瓷密度呈上升趋势,致密度则逐渐降低;β-Si3N4的晶粒粒径随着Yb质量分数的增加呈现先增大后保持不变的趋势;将试样在1 850 ℃下加热5 h,Si3N4陶瓷的热导率从热处理前的 36. 8 W/(m·K)提高到 66. 8 W/(m·K),提高了82%;负载的金属Yb在热处理后形成YbN,YbN优先与Si3N4粉体表面固有的SiO2反应,提高了烧结液相中氮原子与氧原子的数量比,降低了Si3N4陶瓷内晶格的氧含量,从而提高了Si3N4陶瓷的导热性能。【结论】在液氨介质中,将具有高氧亲和力的稀土金属Yb作为烧结助剂,原位负载在Si3N4粉体表面,有助于降低Si3N4陶瓷晶格中的氧含量,提高Si3N4陶瓷的烧结性能。
关键词:Si3N4陶瓷;稀土负载;溶解-析出;导热性能
Objective To enhance the thermal conductivity of high-performance silicon nitride (Si3N4) ceramics, the effects of in-situ loaded rare earth ytterbium (Yb) on the sintering properties of Si3N4 ceramics were investigated.
Methods Yb was dissolved in liquid ammonia and then coated onto the surface of Si3N4 powder via a dissolution-precipitation mechanism. After heat treatment, a YbN@Si3N4 core-shell structured powder was obtained, which was then hot-pressed and sintered. In this study, the morphology and elemental distribution of the Yb-loaded Si3N4 powder were examined. The effects of Yb loading content on the densification, microstructure, and thermal conductivity of Si3N4 ceramics were explored.
Results and Discussion High-performance Si3N4 ceramics were successfully produced through hot-press sintering. As the mass fraction of metallic Yb increased, the density of Si3N4 ceramics showed an upward trend, while the relative density gradually decreased. The grain size of β-Si3N4 initially increased with higher Yb content but subsequently stabilized. After heat treatment at 1 850 ℃ for 5 hours, the thermal conductivity of Si3N4 ceramics was significantly improved, increasing from 36. 8 W/m·K to 66. 8 W/m·K, representing an 82% enhancement. During this process, the loaded metallic Yb was transformed into ytterbium nitride (YbN), which preferentially reacted with the inherent SiO2 on the surface of Si3N4 powder. This reaction increased the nitrogen-to-oxygen ratio in the sintering liquid phase and reduced the oxygen content in the Si3N4 lattice. Consequently, the thermal conductivity of the Si3N4 ceramics was improved.
Conclusion In a liquid ammonia medium, rare-earth Yb, characterized by its high oxygen affinity, was in-situ loaded onto the surface of Si3N4 powder as a sintering aid. This approach effectively reduces the lattice oxygen content in Si3N4 ceramics and enhances their sintering properties, offering a novel strategy for the fabrication of high-thermal-conductivity Si3N4 ceramics.
Keywords:Si3N4 ceramics; rare earth loading; dissolution-precipitation; thermal conductivity
[1]廖圣俊,周立娟,尹凯俐,等. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报,2020,34(21):21105-21114.
LIAO S J, ZHOU L J, YIN K L, et al. Research status of β-Si3N4 ceramics based on high thermal conductivity [J]. Materials Reports,2020,34(21):21105-21114.
[2]LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content[J]. Journal of the European Ceramic Society,2021,41(1):274-283.
[3]HIRAO K, WATARI K, HAYASHI H, et al. High thermal conductivity silicon nitride ceramics[J]. MRS Bulletin,2001,26(6):451-455.
[4]王为得. 基于液相组成和显微结构调控的高热导率氮化硅陶瓷的研究[D]. 上海:中国科学院大学(中国科学院上海硅酸盐研究所),2021.
WANG W D. Study on high thermal conductivity silicon nitride ceramics based on liquid phase composition and microstructure regulation[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences,2021.
[5]王月隆,吴昊阳,贾宝瑞,等. 高导热氮化硅陶瓷用烧结助剂的研究进展[J]. 粉末冶金技术,2024,42(1):1-13.
WANG Y L, WU H Y, JIA B R, et al. Research progress on sintering additives used for high thermal conductivity silicon nitride ceramics[J]. Powder Metallurgy Technology,2024,42(1):1-13.
[6]LIANG H Q, WANG W D, ZUO K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceramics International,2020,46(11):17776-17783.
[7]KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4 : II, effect of lattice oxygen[J]. Journal of the American Ceramic Society,2000,83(8):1985-1992.
[8]KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction‐bonded silicon nitride[J]. International Journal of Applied Ceramic Technology,2014,11(3):534-542.
[9]郗威,周杨杨,刘鹏飞,等 . 球磨介质对氮化硅粉体的微观形貌和表面氧化硅层的影响[J]. 中国粉体技术,2023,29(6):82-90.
XI W, ZHOU Y Y, LIU P F, et al. Effect of ball milling medium on morphology and surface silicon oxide layer of silicon nitride powder[J]. China Powder Science and Technology,2023,29(6):82-90
[10]ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials,2011,23(39):4563-4567.
[11]KOMEYA K, INOUE H. Reduction of oxygen content in silicon nitride ceramics by high-temperature annealing in reducing atmospheres[J]. Journal of the American Ceramic Society,1995,6(25):1011-1018.
[12]WANG W D, YAO D X, LIANG H Q, et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society,2020,40(15):5316-5323.
[13]WANG W D, YAO D X, CHEN H B, et al. ZrSi2-MgO as novel additives for high thermal conductivity of β‐Si3N4 ceramics[J]. Journal of the American Ceramic Society,2020,103(3):2090-2100.
[14]HU F, ZHU T B, XIE Z P, et al. Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate[J]. Ceramics International,2021,47(10):13635-13643.
[15]WANG W D, YAO D X, LIANG H Q, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics[J]. Journal of the American Ceramic Society,2020,103(10):5891-5899.
[16]WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceramics International,2021,47(4):5631-5638.
[17]WANG W D, YAO D X, LIANG H Q, et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter[J]. Journal of Alloys and Compounds,2021,855:157451.
[18]IMAMURA H, SAKATA Y, TSURUWAKA Y, et al. Preparation and catalytic properties of rare earth amides obtained by reactions of Eu or Yb metals with liquid ammonia[J]. Journal of Alloys and Compounds,2006,408:1113-1117.
[19]BANDYOPADHYAY S, RIXECKER G, ALDINGER F. The role of sintering additives in the densification of silicon nitride ceramics[J]. Journal of the American Ceramic Society,2004,83(8):2103-2105.
[20]LU H H, HUANG J L. Effect of Y2O3 and Yb2O3 on the microstructure and mechanical properties of silicon nitride[J]. Ceramics International,2001,27(6):621-628.
[21]RIXECKER G, ALDINGER F. Role of rare earth oxides in the densification and thermal conductivity of silicon nitride ceramics[J]. Journal of the European Ceramic Society,2004,24(15):3759-3767.
[22]周玉栋,李世鹏,王文武,等. 高导热氮化硅陶瓷的制备研究进展[J]. 耐火材料,2024,58(3):270-276.
ZHOU Y D,LI S P,WANG W W,et al. Research progress on preparation of high thermal conductivity silicon nitride ceramics[J]. Refractories,2024,58(3):270-276.
[23]MITOMO M, YANG N, KISHI Y, et al. Influence of powder characteristics on gas pressure sintering of Si3N4[J]. Journal of Materials Science,1988,23(9):3413-3419.
[24]KLEMM H, HERRMANN M, REICH T, et al. High temperature properties of Si3N4 materials[J]. Journal of the European Ceramic Society,1991,7(5):315-318.