ISSN 1008-5548

CN 37-1316/TU

最新出版

MXene粉末的大量制备和应用研究进展

Research progress on large-scale preparation and applications of MXene powders


张传芳,刘欣宇,朱雨萱

四川大学 材料科学与工程学院,四川 成都 610065


引用格式:

张传芳,刘欣宇,朱雨萱. MXene粉末的大量制备和应用研究进展[J]. 中国粉体技术,2026,32(3):1-15.

ZHANG Chuanfang, LIU Xinyu, ZHU Yuxuan. Research progress on large-scale preparation and applications of MXene powders[J]. China Powder Science and Technology,2026,32(3):1−15.

DOI:10.13732/j.issn.1008-5548.2026.03.008

收稿日期:2024-10-17,修回日期:2025-08-07,上线日期:2025-11-19。

基金项目:国家自然科学基金项目,编号:22209118;中央高校基本科研业务费专项资金项目,编号:1082204112A26。

第一作者:张传芳(1988—),男,特聘研究员(正高级),博士,国家优青(海外)获得者,研究方向为二维 MXene 单晶稳定性、高质量MXene片层设计与批量制备、印刷柔性储能、传感及通信集成电子领域等。E-mail:chuanfang. zhang@scu. edu. cn。


摘要:目的】 为了突破二维材料的合成瓶颈,将二维纳米材料的生产规模扩大到工业水平,对二维过渡金属碳(氮)化物(Transition Metal Carbide (Nitride), MXene)的大量制备问题进行研究。【研究现状 综述HF刻蚀、无氟刻蚀等MXene的合成方法,批量制备MXene粉体的策略,少层和多层MXene粉末的大量制备方法,MXene粉末在锂离子电池、超级电容器、水处理等能源领域的应用等。MXene是一类通过自上而下合成方法制备的二维过渡金属碳化物或氮化物,该工艺易于按反应器体积进行放大;对于单层 MXene 粉末,目前多采用改进的铵根离子剥离方法(包括逐步剥离和离心辅助聚沉),最终实现少层MXene纳米片粉末的快速大量制备。多层MXene与少层MXene的大量制备方法各有侧重,在放大生产时不会改变其结构或性质,从而具备进一步放大和商业化生产的可行性;多层MXene制备工艺较为成熟,成本较低,但在某些应用中受限于其层间距和剥离效率,相比之下,少层MXene通过插层改性和扩层方法制备,虽制备过程更为复杂,但能显著提高材料的性能,更适合高要求的应用场景。【结论与展望】提出未来的研究将聚焦于开发更高效、低成本的制备技术;新型MXenes不仅继承传统二维纳米材料的优异性能,还表现出类似石墨烯和金属的高导电性(电导率约为8000 S/cm),被广泛应用于能量存储和传感器等领域,对于水处理领域也有重要意义。

关键词:二维过渡金属碳(氮)化物;氢氟酸蚀刻; 电容器

Abstract

Significance To address the synthesis bottlenecks of two-dimensional (2D) materials and facilitate their industrial-scale pro⁃duction, the large-scale preparation of metal carbides and/or carbonitrides (MXenes) is of significant importance. Currently,

the industrial-scale production of 2D materials is hindered because most methods rely on top-down approaches, which are limited by substrate size and the availability of chemical precursors for synthesis and exfoliation. Consequently, only a few 2D materials have been successfully produced at scale. However, MXenes, due to their unique synthesis methods, hold significant potential to overcome these challenges and enable the scalable manufacturing of 2D nanomaterials.

Progress This review systematically discusses the synthesis methods of MXenes, including hydrofluoric acid (HF) etching and fluorine-free etching, strategies for bulk preparation of MXene powders, large-scale production methods for few-layer and multilayer MXene powders, their applications in energy-related fields (such as lithium-ion batteries, supercapacitors, and water treatment), as well as the existing challenges of MXenes.

Conclusion and Prospects MXenes are a class of 2D transition metal carbides or nitrides synthesized via top-down methods,which could be readily scaled up based on reactor volume. For single-layer MXene powders, improved ammonium ion exfolia⁃tion methods (including stepwise exfoliation and centrifugation-assisted sedimentation) are commonly employed to achieverapid, scalable production of few-layer MXene nanosheets. The large-scale preparation methods for multilayer and few-layer MXenes differ in their technical focus, but neither alters their intrinsic structure or properties of the materials during scale-up,demonstrating feasibility for further industrial amplification and commercialization. The synthesis of multilayer MXenes is relatively mature and cost-effective, but their interlayer spacing and exfoliation efficiency limit their performance in certain applications. In contrast, fewla-yer MXenes, prepared via intercalation modification and exfoliation methods, involve amore complex process yet demonstrate significantly enhanced properties, making them more suitable for demanding applications. Future research will focus on developing more efficient and low-cost preparation techniques. Novel MXenes keep the outstanding properties of conventional 2D nanomaterials and exhibit exceptional electrical conductivity (≈8 000 S/cm), comparable to graphene and metals, enabling their wide application in energy storage and sensors. They also hold significant promise for water treatment.

Keywords:two-dimensional transition metal carbon (nitrogen) compounds; hydrofluoric acid etching; capacitor


参考文献(References)

[1]MAS-BALLESTÉ R, GÓMEZ-NAVARRO C, GÓMEZ-HERRERO J, et al. 2D materials: to graphene and beyond[J].Nanoscale,2011,3(1):20-30.

[2]NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science,2016,353(6298): aac9439.

[3]MANNIX A J, ZHOU X F, KIRALY B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs[J].Science,2015,350(6267):1513-1516.

[4]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.

[5]ZHI C, BANDO Y, TERAO T, et al. Chemically activated boron nitride nanotubes[J]. Chemistry An Asian Journal,2009,4(10):1536-1540.

[6]NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Acad⁃emy of Sciences of the United States of America,2005,102(30):10451-10453.

[7]KANG K, XIE S E, HUANG L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature,2015,520(7549):656-660.

[8]LIN Z, MCCREARY A, BRIGGS N, et al. 2D materials advances: from large scale synthesis and controlled heterostruc⁃tures to improved characterization techniques, defects and applications[J]. 2D Materials,2016,3(4):042001.

[9]AKYILDIZ A, ILGAZ AYSAN I, ABDULLAHI Y Z, et al. Investigation of the electronic and magnetic properties of bareand oxygen-terminated ordered double transition-metal MXenes for spintronic application[J]. Physical Chemistry Chemi⁃cal Physics,2024,26(41):26566-26575.

[10]林颖,薛子龙,冯书钊,等 . 电化学剥离一步构建碘掺杂石墨烯用于超级电容器[J]. 聊城大学学报(自然科学版),2025,38(6):900-908.

LIN Ying, XUE Zilong, FENG Shuzhao, et al. One-step construction of iodine-doped graphene by electrochemical exfo⁃liation for supercapacitors[J]. Journal of Liaocheng University (Natural Science Edition),2025,38(6):900-908.

[11]NEPAL A, SINGH G P, FLANDERS B N, et al. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation[J]. Nanotechnology,2013,24(24):245602.

[12]ANASORI B, SHI C Y, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons,2016,1(3):227-234.

[13]ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J].ACS Nano,2015,9(10):9507-9516.

[14]ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098.

[15]YAO Q F, ZHU M, YANG Z C, et al. Molecule-like synthesis of ligand-protected metal nanoclusters[J]. Nature Reviews Materials,2025,10(2):89-108.

[16]DUAN X D, WANG C, PAN A L, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconduc⁃tors: opportunities and challenges[J]. Chemical Society Reviews,2015,44(24):8859-8876.

[17]JOON KIM S, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[M]//MXenes. New York: Jenny Stanford Publishing,2023:971-992.

[18]LI N X, TAO S X, CHEN Y H, et al. Cation and anion immobilization through chemical bonding enhancement with fluo⁃rides for stable halide perovskite solar cells[J]. Nature Energy,2019,4(5):408-415.

[19]MALESKI K, REN C E, ZHAO M Q, et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes[J]. ACS Applied Materials & Interfaces,2018,10(29):24491-24498.

[20]NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969.

[21]MOHAMED A, KATHLEEN M, TYLER S,et al. Selective Etching of Silicon from Ti3SiC2(MAX) To Obtain 2D Titanium Carbide (MXene)[J]. Angewandte Chemie International Edition,2018,57(19):5444-5448.

[22]AKUZUM B, MALESKI K, ANASORI B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions:a guide for processing MXenes[J]. ACS Nano,2018,12(3):2685-2694.

[23]BORYSIUK V, LYASHENKO I A, POPOV V L. Molecular dynamics study of bending deformation of Mo2Ti2C3 and Ti4C3(MXenes) nanoribbons[J]. Molecules,2024,29(19):4668.

[24]LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis[J]. Nature Synthesis,2022,1(8):601-614.

[25]NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J].Advanced Materials,2011,23:4248-4253.

[26]SHENG X X, LI S H, HUANG H W, et al. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets[J]. Journal of Materials Science,2021,56(6):4212-4224.

[27]KIM Y J, KIM S J, SEO D, et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis[J]. Chem⁃istry of Materials,2021,33(16):6346-6355.

[28]XUE N, LI X S, ZHANG M Q, et al. Chemical-combined ball-milling synthesis of fluorine-free porous MXene for highperformance lithium ion batteries[J]. ACS Applied Energy Materials,2020,3(10):10234-10241.

[29]MAYYAHI A A, SARKER S, EVERHART B M, et al. One-step fluorine-free synthesis of delaminated, OH-terminated Ti3C2: high photocatalytic NOx storage selectivity enabled by coupling TiO2 and Ti3C2—OH[J]. Materials Today Communi⁃cations,2022,32:103835.

[30]YIN T, LI Y, WANG R H, et al. Synthesis of Ti3C2FMXene with controllable fluorination by electrochemical etching forlithium-ion batteries applications[J]. Ceramics International,2021,47(20):28642-28649.

[31]LIU L, ORBAY M, LUO S, et al. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route[J].ACS Nano,2022,16:111-118

[32]张振华. 基于MXene复合材料的制备及其电化学行为研究[D]. 郑州:郑州轻工业大学,2022.

ZHANG Z H. Research on the preparation and electrochemical behavior of MXene composite materials[D]. Zhengzhou:Zhengzhou University of Light Industry,2022.

[33]邝德琳. Ti3C2TMXene基复合材料的制备及其气敏性能研究[D]. 重庆:重庆大学,2022.

KUANG D L. Preparation of Ti3C2Tx MXene-based composites and their gas sensing properties research[D]. Chongqing:Chongqing University,2022.

[34]邓志明. MXene功能化及其导电墨水的制备与性能研究[D]. 北京:北京化工大学,2023.

DENG Z M. Study on the functionalization of MXene and the preparation and performance of conductive inks[D]. Beijing:Beijing University of Chemical Technology,2023.

[35]SHUCK C E, SARYCHEVA A, ANAYEE M, et al. Scalable synthesis of Ti3C2Tx MXene[J]. Advanced Engineering Mate⁃rials,2020,22(3):1901241.

[36]ZHANG S L, YING H J, YUAN B, et al. Partial atomic tin nano complex pillared few-layered Ti3C2TxMXenes for superior lithium-ion storage[J]. Nano-Micro Letters,2020,12(1):78.

[37]ZHANG S L, HUANG P F, WANG J L, et al. Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders[J]. The Journal of Physical Chemistry Letters,2020,11(4):1247-1254.

[38]NATU V, PAI R, SOKOL M, et al. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic sol⁃vents[J]. Chem,2020,6(3):616-630.

[39]MATTHEWS K, ZHANG T, SHUCK C E, et al. Guidelines for synthesis and processing of chemically stable twodimensional V2CTx MXene[J]. Chemistry of Materials,2022,34(2):499-509.

[40]ASHOK A, SASEENDRAN S B, ASHA A S. Synthesis of Ti3C2Tx MXene from the Ti3AlC2 MAX phase with enhanced optical and morphological properties by using ammonia solution with the in situ HF forming method[J]. Physica Scripta,2022,97(2):025807.

[41]党阿磊,方成林,赵曌,等 . 新型二维纳米材料 MXene 的制备及在储能领域的应用进展[J]. 材料工程,2020,48(4):1-14.

DANG A L, FANG C L, ZHAO Z, et al. Preparation of novel two-dimensional nanomaterials MXene and its application progress in the field of energy storage [J]. Materials Engineering,2020,48(4):1-14.

[42]XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature,2018,557:409-412.

[43]王玉莹,马德阳,杨艺冉,等 . 五种淀粉凝胶电解质的制备、表征及超级电容器研究[J]. 聊城大学学报(自然科学版),2025,38(3):411-420.

WANG Y Y,MA D Y,YANG Y Y,et al. Preparation and characterization of five kinds of starch gel electrolytes and their supercapacitors[J]. Journal of Liaocheng University (Natural Science Edition),2025,38(3):411-420.

[44]HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381.

[45]XU C, WANG L B, LIU Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Mate⁃rials,2015,14(11):1135-1141.

[46]LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O)via alkali treatment[J].Angewandte Chemie International Edition,2018,57(21):6115-6119.

[47]XIE X H, XUE Y, LI L, et al. Surface Al leached Ti3AlCas a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale,2014,6(19):11035-11040.

[48]YANG S, ZHANG P P, WANG F X, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie,2018,130(47):15717-15721.

[49]JIANG H M, WANG Z G, YANG Q, et al. Ultrathin Ti3C2Tx(MXene) nanosheet-wrapped NiSeoctahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting[J]. Nano-Micro Letters,2019,11(1):31.

[50]HE Z Q, RONG T D, LI Y, et al. Two-dimensional TiVC solid-solution MXene as surface-enhanced Raman scattering substrate[J]. ACS Nano,2022,16(3):4072-4083.

[51]张文娟,寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程,2021,49(9):14-26.

ZHANG W J, KOU M. Application of two-dimensional naterial MXene in water treatment field[J]. Materials Engineering,2021,49(9):14-26.

[52]韩亚南,洪佳辉,张安睿,等. MXene二维无机材料在环境修复中的应用[J]. 化学进展,2022,34(5):1229-1244.

HAN Y N,HONG J H,ZHANG A R, et al. The application of MXene two-dimensional inorganic materials in environmental remediation[J]. Progress in Chemistry,2022,34(5):1229-1244.

[53]WANG H Z, MA J Q, LI D H. Two-dimensional hybrid perovskite-based van der Waals heterostructures[J]. The Journal of Physical Chemistry Letters,2021,12(34):8178-8187.

[54]胡俊毅,李仕友,贺俊钦,等. 新型二维材料MXene吸附重金属的研究进展[J]. 工业水处理,2022,42(6):116-124.

HU J Y, LI S Y, HE J Q,et al. Research progress on the adsorption of heavy metals by novel two-dimensional material MXene[J]. Industrial Water Treatment,2022,42(6):116-124.

[55]崔海峰,徐岩岩,孙海翔. MXene在染料废水处理中的应用[J]. 化工新型材料,2022,50(5):270-273.

CUI H F,XU Y Y,SUN H X. Application of MXene in dye wastewater treatment[J]. New Chemical Materials,2022,50(5):270-273.

[56]侯建华,杨木易,孙昂. MXenes及其复合材料在环境领域中的应用[J]. 精细化工,2021,38(12):2422-2431.

HOU J H,YANG M Y,SUN A. Applications of MXenes and their composites in the environmental field[J]. Fine Chemicals,2021,38(12):2422-2431.

[57]王赛娣,范议议,孟秀霞,等 . 羟基化 MXene 二维层状膜对重金属离子的脱除[J]. 膜科学与技术,2022,42(1):57-64,71.

WANG S D,FAN Y Y,MENG X X,et al. Hydroxylated MXene two-dimensional layered membranes for the removal of heavy metal ions[J]. Journal of Membrane Science and Technology,2022,42(1):57-64,71.

[58]王虹,邵亚楠,于迪,等. MXene/C电催化膜制备及对水中盐酸四环素降解性能研究[J]. 膜科学与技术,2022,42(6):151-158.

WANG H, SHAO Y N, YU D,et al. Preparation of MXene/C electrocatalytic membrane and study on degradation performance of tetracycline hydrochloride in water[J]. Journal of Membrane Science and Technolgy,2022,42(6):151-158.