[1]HOU Z G, ZHANG X Q, CHEN J W, et al. Towards high-performance aqueous sodium ion batteries: constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Advanced Energy Materials,2022,12(14):2104053.
[2]LIU Z X, WANG R, GAO Y C, et al. Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries[J]. Advanced Functional Materials,2023,33(49):2308463.
[3]LEE Y H, JEOUN Y, LEE S H, et al. Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode[J]. Chemical Engineering Journal,2023,464:142580.
[4]XU H T, YANG W Y, LI M, et al. Advances in aqueous zinc ion batteries based on conversion mechanism: challenges,strategies, and prospects[J]. Small,2024,20(27):2310972.
[5]CHEN W Y, XIE Z B, CHEN H C, et al. Low-cost aqueous electrolyte with MBA additives for uniform and stable zinc deposition[J]. ACS Applied Materials & Interfaces,2024,16(23):30580-30588.
[6]WANG J Y, YU Y, CHEN R W, et al. Induced anionic functional group orientation-assisted stable electrode-electrolyte interphases for highly reversible zinc anodes[J]. Advanced Science,2024,11(25):2402821.
[7]TIAN H J, FENG G X, WANG Q, et al. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dualcation electrolytes[J]. Nature Communications,2022,13(1):7922.
[8]CHEN P, YUAN X H, XIA Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Advanced Science,2021,8(11):2100309.
[9]ZHANG J J, MAO L H, XIA Z G, et al. Zincophilic design for highly stable and dendrite-free zinc metal anodes in aqueous zinc-ion batteries[J]. Advanced Functional Materials,2024:2412547.
[10]ZHAO X, WANG Y, HUANG C, et al. Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries[J]. Angewandte Chemie International Edition,2023,62(46):e202312193.
[11]HUANG C, ZHAO X, HAO Y S, et al. Stabilizing Zn metal anodes by 4-hydroxybenzaldehyde as the H* scavenger[J].Energy Storage Materials,2024,65:103158.
[12]CAO J, WU H Y, ZHANG D D, et al. In⁃situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes[J]. Angewandte Chemie International Edition,2024,63(29): e202319661.
[13]LI Y M, WANG Z W, LI W H, et al. Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries[J]. Energy Storage Materials,2023,61:102873.
[14]WANG S W, ZHENG H Y, DING J W, et al. A coaxial zinc-tin vertically oriented array-based anode for achieving ultra⁃high areal current and capacity up to 80 mA·cm−2and 80 mA·h·cm−2[J]. Journal of Materials Chemistry A,2022,10(4):1919-1927.
[15]ZHOU M, FU C Y, QIN L P, et al. Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries[J]. Energy Storage Materials,2022,52:161-168.
[16]LI J W, ZHOU S, CHEN Y N, et al. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes[J]. Advanced Functional Materials,2023,33(52):2307201.
[17]LI M, LI Z L, WANG X P, et al. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batter⁃ies: from electrolytes to electrode materials[J]. Energy & Environmental Science,2021,14(7):3796-3839.
[18]CHEN S W, WANG H B, ZHU M Y, et al. Revitalizing zinc-ion batteries with advanced zinc anode design[J]. Nanoscale Horizons,2022,8(1):29-54.
[19]CHEN R W, ZHANG W, HUANG Q B, et al. Trace amounts of triple-functional additives enable reversible aqueous zincion batteries from a comprehensive perspective[J]. Nano-Micro Letters,2023,15(1):81.
[20]WANG G L, YAO Q, DONG J J, et al. In situ construction of multifunctional surface coatings on zinc metal for advanced aqueous zinc-iodine batteries[J]. Advanced Energy Materials,2024,14(5):2303221.
[21]GUO W, ZHANG Y, TONG X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion bat⁃teries[J]. Materials Today Energy,2021,20:100675.
[22]DONG W T, DU M, ZHANG F, et al. In situ electrochemical transformation reaction of ammonium-anchored heptavana⁃date cathode for long-life aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(4):5034-5043.