ISSN 1008-5548

CN 37-1316/TU

最新出版

磷酸镁水泥基材料改性研究进展

Research progress on modification of magnesium phosphate cement-based materials


谢 剑1,4 ,金凌翼2 ,李 伟1,3

1. 天津大学 a. 建筑工程学院, b. 滨海土木工程结构与安全教育部重点实验室,天津 300354;

2. 中建海龙科技有限公司,广东 深圳 518110;

3. 兰州交通大学 土木工程学院,甘肃 兰州 730070;

4. 北京市既有建筑改造工程技术研究中心(天津分中心),天津 300354


引用格式:

谢剑,金凌翼,李伟. 磷酸镁水泥基材料改性研究进展[J]. 中国粉体技术,2026,32(1):1-11.

XIE Jian, JIN Lingyi, LI Wei. Research progress on modification of magnesium phosphate cement-based materials[J]. China Powder Science and Technology,2026,32(1):1−11.

DOI:10.13732/j.issn.1008-5548.2026.01.011

收稿日期:2024-11-25,修回日期:2025-10-20,上线日期:2025-11-21。

基金项目:国家自然科学基金项目,编号:52068043。

第一作者:谢剑(1974—),男,教授,博士,博士生导师,研究方向为混凝土结构基本理论和加固技术研究与应用。E-mail: xiejian@tju.edu. cn。


摘要:【目的】为了提升磷酸镁水泥(magnesium phosphate cement, MPC)的韧性,解决 MPC凝结过快、脆性破坏等不足,进一步提升MPC强度,研究掺加不同矿物掺合料和高性能纤维对MPC进行改性的效果,以期在工程应用中结合实际情况选择最佳改性方式。【研究现状】分别介绍掺加粉煤灰、偏高岭土、工业废渣等矿物掺合料对MPC工作性能、力学性能的影响规律,概括掺加钢纤维、玻璃纤维、玄武岩纤维等纤维对MPC力学性能的影响规律,基于影响规律给出改性建议。【结论与展望】提出掺加矿物掺合料能够明显优化MPC的工作性能和基本力学性能;掺加纤维主要提升MPC的韧性与抗裂能力,改性效果与纤维自身种类、长度等因素密切相关,对MPC的抗折强度提升明显,但对于MPC抗压强度的提升幅度较小。认为未来应不断完善MPC制备工艺、性能标准等的规范化与统一化,同时探索多种矿物掺合料以及多种纤维共同交叉作用对MPC性能的影响,建立综合性能更强、更稳定、更标准的磷酸镁水泥基材料的制备方法与行业普遍认可的相关指导规程。

关键词:磷酸镁水泥;矿物掺合料;纤维;改性

Abstract

Significance Magnesium phosphate cement (MPC) is an advanced cementitious material renowned for its ceramic-like properties, making it a promising candidate for structural repair and reinforcement applications. Its rapid hardening characteristics and early-age strength development allow for efficient construction in time-sensitive projects, while its exceptional dimensional stability ensures long-term structural integrity. Despite these advantages, practical challenges such as excessively short setting times and inherent brittleness have hindered its widespread adoption. To overcome these limitations, researchers have focused on modifying MPC through the strategic incorporation of mineral admixtures and high-performance fibers. These modifications aim to optimize the material’s fresh-state workability, enhance its mechanical performance such as flexural and compressive strength, and improve its fracture toughness, ultimately transforming MPC into a more versatile and durable construction material suitable for diverse engineering scenarios.

Progress The modification of MPC has been extensively studied through the integration of various mineral admixtures and fiber reinforcements. Mineral admixtures such as fly ash (FA), metakaolin (MK), and industrial waste slag play pivotal roles in refining the material’s microstructure and enhancing its performance. For instance, FA acts as a micro-aggregate that fills the voids between MPC particles, thereby improving paste fluidity, reducing hydration heat, and mitigating the risk of thermal cracking. Its pozzolanic reactivity further contributes to long-term strength development. MK, a highly reactive aluminosilicate, accelerates the formation of stable hydration products, balancing early strength development with controllable setting times. Industrial waste slag, on the other hand, reduces production costs and promotes sustainable construction practices.

Conclusions and Prospects The incorporation of mineral admixtures and fibers has profoundly influenced MPC performance, though their effects differ in scope. Mineral admixtures primarily enhance fresh-state properties, such as extending setting time, while refining the microstructure to boost mechanical strength and durability. Fibers, conversely, contribute mainly to toughening mechanisms, elevating energy absorption capacity compared to plain MPC, even though they have limited influence on compressive strength.

Keywords:magnesium phosphate cement; mineral additive; fiber; modification


参考文献(References)

[1]MALDONADO-ALAMEDA A, ALFOCEA-ROIG A, HUETE-HERNÁNDEZ S, et al. Magnesium phosphate cement incorporating sheep wool fibre for thermal insulation applications[J]. Journal of Building Engineering,2023,76:107043.

[2]朱加业. 磷酸镁水泥固化淤泥试验研究与路用性能评价[D]. 武汉:武汉大学,2021.

ZHU J Y. Assessment of magnesium potassium phosphate cement for dredged sludge solidification and road performance[D]. Wuhan: Wuhan University,2021.

[3]XU C W, HAN J M, YANG Y Q. A review on magnesium potassium phosphate cement: characterization methods[J]. Journal of Building Engineering,2024,82:108284.

[4]FANG B D, HU Z J, SHI T, et al. Research progress on the properties and applications of magnesium phosphate cement[J]. Ceramics International,2023,49(3):4001-4016.

[5]ZHENG Y Z Z, ZHOU Y, HUANG X M, et al. Effect of raw materials and proportion on mechanical properties of magnesium phosphate cement[J]. Journal of Road Engineering,2022,2(3):243-251.

[6]MENG X R, JIANG Y, CHEN B, et al. Research progress on the setting time and solidification mechanism of magnesium phosphate cement: a review[J]. Construction and Building Materials,2023,408:133612.

[7]YUAN J, HUANG X, CHEN X, et al. Early-age mechanical properties and hydration degrees of magnesium phosphate cement paste in freezing winter of cold regions[J]. Construction and Building Materials,2022,345:128337.

[8]WU C Y, CHEN C, ZHANG H F, et al. Preparation of magnesium oxysulfate cement using magnesium-rich byproducts from the production of lithium carbonate from salt lakes[J]. Construction and Building Materials,2018,172:597-607.

[9]MA C, LIU Y T, SHI J Y, et al. Influencing mechanism of silica fume on early-age properties of magnesium phosphate cement-based coating for hydraulic structure [J]. Journal of Building Engineering,2022,54:104623.

[10]HE Z H, JIANG Y Y, SHI J Y, et al. Effect of silica fume on the performance of high-early-strength UHPC prepared with magnesium ammonium phosphate cement[J]. Case Studies in Construction Materials,2024,20: e03351.

[11]CHEN X Q, GUO J B, YU H F, et al. Impact of calcination temperatures on lithium magnesium slag for enhanced magnesium phosphate cement properties[J]. Construction and Building Materials,2024,451:138766.

[12]吕丽君. 矿物掺料高延性磷酸镁水泥基纤维复合材料力学性能试验研究[D]. 郑州:郑州大学,2021.

LYU L J. Experimental study on mechanical properties of high ductility magnesium phosphate cement-based fiber composite material with mineral admixture[D]. Zhengzhou: Zhengzhou University,2021.

[13]吴发红,杨建明,崔磊,等 . 钢渣粉和粉煤灰对磷酸钾镁水泥抗盐冻性影响[J]. 建筑材料学报,2018,21(6):877-885.

WU F H, YANG J M, CUI L, et al. Effect of steel slag powder and fly ash on salt-frost resistance of magnesium potassium phosphate cement[J]. Journal of Building Materials,2018,21(6):877-885.

[14]朱金才,李超众,闫长旺,等 . 粉煤灰改性磷酸镁水泥性能及机理分析[J]. 材料科学与工程学报,2024,42(2):262-268.

ZHU J C, LI C Z, YAN C W, et al. Performance and mechanism analysis of magnesium phosphate cement modified by fly ash[J]. Journal of Materials Science and Engineering,2024,42(2):262-268.

[15]孟祥瑞,刘源涛,陈兵,等. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报,2024,38(17):29-35.

MENG X R, LIU Y T, CHEN B, et al. Study on the mechanism of fly ash in magnesium phosphate cement[J]. Materials Reports,2024,38(17):29-35.

[16]ZHANG H S, ZHANG Q S, ZHANG M, et al. Effect of fly ash and metakaolin on the mechanical properties and microstructure of magnesium ammonium phosphate cement paste[J]. Construction and Building Materials,2024,424:135871.

[17]郭伯禹. 粉煤灰/硅灰改性磷酸镁水泥温升劣化机理研究[D]. 呼和浩特:内蒙古工业大学,2023.

GUO B Y. Study on temperature rise degradation mechanism of fly ash/silica fume modified magnesium phosphate cement[D]. Hohhot: Inner Mongolia University of Technology,2023.

[18]李春梅,王培铭,王安,等. 掺合料对磷酸镁水泥的性能影响及机理研究[J]. 混凝土,2015(1):115-117,125.

LI C M, WANG P M, WANG A, et al. Effect of admixtures on properties of magnesium phosphate cement and the mechanism[J]. Concrete,2015(1):115-117,125.

[19]李帆. 矿物掺合料与纤维对磷酸镁水泥性能的影响研究[D]. 西安:长安大学,2023.

LI F. Study on the properties of magnesium phosphate cement with mineral admixtures and fibers[D]. Xi’an: Chang’an University,2023.

[20]骆佳银. 硅铝质掺合料在磷酸镁水泥中的作用效应[D]. 重庆:重庆大学,2022.

LUO J Y. Effect of aluminosilicate admixture in magnesium phosphate cement[D]. Chongqing: Chongqing University,2022.

[21]LIU R Q, WANG W, QI D W, et al. Static and dynamic mechanical properties of magnesium phosphate cement modified by metakaolin after high-temperature treatment[J]. Construction and Building Materials,2023,392:131933.

[22]彭家蔓. 磷酸镁水泥基泡沫混凝土的研制与性能[D]. 北京:北京建筑大学,2024.

PENG J M. Development and properties of magnesium phosphate cement-based foam concrete[D]. Beijing: Beijing University of Engineering and Architecture,2024.

[23]石亚文,陈兵. 偏高岭土改性磷酸镁水泥[J]. 硅酸盐学报,2018,46(8):1111-1116.

SHI Y W, CHEN B. Magnesium phosphate cement modified by metakaolin[J]. Journal of the Chinese Ceramic Society. 2018,46(8):1111-1116.

[24]JING Y B, JIANG Y, CHEN B, et al. Influence of steel slag powder on the characteristics of magnesium phosphate cement [J]. Journal of Building Engineering,2023,77:107454.

[25]李悦,谢梦洋,林辉,等. 钢渣对磷酸镁水泥性能的影响研究[J]. 硅酸盐通报,2018,37(11):3373-3378.

LI Y, XIE M Y, LIN H, et al. Effect of steel slag on the properties of magnesium phosphate cement[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3373-3378.

[26]WANG X, HU X, CHONG L L, et al. Effects of the combination of NH4H2PO4 and KH2PO4 on the interfacial bond between magnesium phosphate cement and steel fiber[J]. Construction and Building Materials,2023,407:133405.

[27]LAI Z Y, CHEN J W, YU Y P, et al. Effect of magnesium hydroxide on the properties of fireproof coatings for steel structure based on magnesium phosphate cement [J]. Case Studies in Construction Materials,2024,21: e03853.

[28]ZHUANG J P, NI P J, XU R X, et al. Dynamic properties of steel fiber-reinforced potassium magnesium phosphate cement-based materials after high-temperature treatment[J]. Journal of Cleaner Production,2023,429:139530.

[29]LI J, JI Y S, JIN C, et al. Improvement and mechanism of the mechanical properties of magnesium ammonium phosphate cement with Chopped fibers[J]. Construction and Building Materials,2020,243:118262.

[30]FENG H, LI L L, WANG W Q, et al. Mechanical properties of high ductility hybrid fibres reinforced magnesium phosphate cement-based composites[J]. Composite Structures,2022,284:115219.

[31]郑淑清,胡玥,李利孝,等. 钢纤维增强磷酸镁水泥复合材料的研究进展[J]. 混凝土,2023(6):188-192.

ZHENG S Q, HU Y, LI L X, et al. Research progress of steel fiber reinforced magnesium phosphate cement composites[J]. Concrete,2023(6):188-192.

[32]WANG X, HU X, YANG J M, et al. Research progress on interfacial bonding between magnesium phosphate cement and steel: a review[J]. Construction and Building Materials,2022,342:127925.

[33]FENG H, LI L L, ZHANG P, et al. Microscopic characteristics of interface transition zone between magnesium phosphate cement and steel fiber[J]. Construction and Building Materials,2020,253:119179.

[34]苏柳铭. 磷酸镁水泥纤维改性及其路面修补应用研究[D]. 重庆:重庆大学,2012.

SU L M. Research of magnesium phosphate cement modified by fiber and application in pavement repair[D]. Chongqing: Chongqing University,2012.

[35]李茂,岳燕飞,钱觉时,等. 钢纤维增强磷酸镁水泥混凝土力学性能研究[J]. 武汉大学学报(工学版),2022,55(7):691-698.

LI M, YUE Y F, QIAN J S, et al. Investigation on the mechanical properties of steel fiber reinforced magnesium phosphate cement concrete[J]. Engineering Journal of Wuhan University,2022,55(7):691-698

[36]YUAN X Y, PENG L, CHEN B. Investigation of magnesium phosphate cement on river dredged sludge with varying humic acid content and solidification mechanism[J]. Journal of Rock Mechanics and Geotechnical Engineering,2025,17(1):573-585.

[37]DU Y B, WANG Z Y, GAO P W, et al. Corrosion resistance of HRB500 steel rebar coated with glass fiber reinforced magnesium phosphate cement composite in 3. 5% sodium chloride solution[J]. International Journal of Electrochemical Science,2022,17(11):221133.

[38]方圆,陈兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 材料导报,2017,31(24):6-9,39.

FANG Y, CHEN B. The enhancement and mechanism of glass fiber on mechanical properties of magnesium phosphate cement mortar[J]. Materials Reports,2017,31(24):6-9,39.

[39]刘军,刘畅,刘润清,等 . 玻璃纤维增强磷酸镁水泥的力学性能[J]. 材料科学与工程学报,2020,38(6):1026-1031.

LIU J, LIU C, LIU R Q, et al. Mechanical properties of glass fiber reinforced magnesium phosphate cement[J]. Journal of Materials Science and Engineering,2020,38(6):1026-1031.

[40]GAO H, JIANG B X, LEI S J, et al. Comparisons between basalt for continuous fiber and ordinary basalt[J]. Ceramics International,2025,51(1):132-146.

[41]AHMAD M R, CHEN B. Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement(MPC)mortar[J]. Construction and Building Materials,2018,190:466-478.

[42]JAGADEESH P, RANGAPPA S M, SIENGCHIN S. Basalt fibers: an environmentally acceptable and sustainable green material for polymer composites[J]. Construction and Building Materials,2024,436:136834.

[43]RAFAT M T, SHUCHI T Z, EVAN F R, et al. Mechanical and absorption properties of carbon-basalt and glass fiber reinforced composites: a comprehensive study with implications for advanced manufacturing technology[J]. Results in Materials,2024,23:100615.

[44]LIU X, WANG X, CHEN Z Y, et al. Flexural behavior of concrete reinforced with micro basalt fibers and BFRP minibars[J]. Journal of Building Engineering,2024,97:110751.

[45]LIU X Z, XIANG K, GUO Y C, et al. Experimental study on impact toughness of multi-combination hybrid fiber-reinforced magnesium phosphate cement-based materials[J]. Journal of Building Engineering,2023,78:107564.

[46]谢剑,刘家旺,李伟,等. 玄武岩纤维网格增强磷酸镁水泥砂浆复合材料力学性能[J]. 复合材料学报,2024,41(10):5492-5503.

XIE J, LIU J W, LI W, et al. Mechanical properties of basalt fiber reinforced polymer grids reinforced magnesium phosphate cement mortar composite[J]. Acta Materiae Compositae Sinica,2024,41(10):5492-5503.

[47]李伟,谢剑,佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报,2024,38(17):36-44.

LI W, XIE J, TONG C L. Study of flexural strengthening and toughening effect of basalt minibar on magnesium phosphate cement repair mortar[J]. Materials Reports,2024,38(17):36-44.

[48]许立. 玄武岩纤维增强磷酸镁水泥基复合材料力学性能研究[D]. 沈阳:沈阳工业大学,2023.

XU L. Study on mechanical properties of basalt fiber reinforced magnesium phosphate cement based composites[D]. Shenyang: Shenyang University of Technology,2023.

[49]QIN J H, QIAN J S, LI Z, et al. Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites[J]. Construction and Building Materials,2018,188:946-955.

[50]LI T, ZHANG J, YAO Z L, et al. Workability, mechanical properties, pore characteristics and microstructure of magnesium phosphate cement-based concrete: Influence of curing age, fiber type and dosage[J]. Construction and Building Materials,2025,458:139537.