宗志浩1 ,庞祥波2 ,杨绍寒2 ,李帅帅2 ,胡 静2 ,高道伟1 ,李春生1,2
1. 济南大学 化学化工学院,山东 济南 250022;2. 山东百特新材料有限公司,山东 临沂 276600
宗志浩,庞祥波,杨绍寒,等. 喷雾干燥法制备多孔二氧化硅微球[J]. 中国粉体技术,2026,32(2):1-11.
ZONG Zhihao, PANG Xiangbo, YANG Shaohan, et al. Preparation of porous silica microspheres by spray drying method[J].
China Powder Science and Technology,2026,32(2):1−11.
DOI:10.13732/j.issn.1008-5548.2026.02.013
收稿日期:2025-06-13,修回日期:2025-07-30,上线日期:2025-11-12。
基金项目:国家自然科学基金项目,编号22278174,21808079;山东省优秀青年科学基金项目(海外),编号:2022HWYQ-082;山东省泰山学者青年专家计划项目,编号: tsqn202408211;山东省自然科学基金项目,编号: ZR2021MB117。
第一作者:宗志浩(2001—),男,硕士研究生,研究方向为无机非金属材料制备。E-mail:2454337536@qq. com。
通信作者:高道伟(1987—),男,教授,博士,硕士生导师,泰山学者青年专家、山东省海外优青,研究方向为多级孔分子筛材料的精准合成与应用。E-mail:chm_gaodw@ujn. edu. cn;
李春生(1967—),男,教授,博士,硕士生导师,研究方向为无机非金属材料。E-mail:chm_lics@ujn. edu. cn。
摘要:【目的】 为了提高多孔二氧化硅(SiO2)微球的制备效率,实现多孔SiO2微球的大规模生产,对喷雾干燥法制备多孔SiO2微球的工艺进行研究。【方法】 采用喷雾干燥工艺制备多孔SiO2微球,以支链形、球形等不同形貌的硅溶胶为源,研究不同硅源对喷雾干燥后多孔SiO2微球形貌的影响;采用场发射扫描电子显微镜、比表面积及孔径分析仪等对微球进行表征。【结果】 支链形硅溶胶喷雾干燥后得到的多孔 SiO2微球的比表面积大,最高可达 789. 51m2·g-1,孔径为 1~10nm,且成球率高于球形硅胶;通过控制工艺条件,可调控多孔SiO2微球的比表面积和孔径。【结论】 喷雾干燥法制备多孔SiO2微球的工艺过程简单,具有孔隙率可调控等优点,可用于工业化生产。
关键词:喷雾干燥;多孔SiO2微球;硅溶胶
Objective As one of the powder preparation methods, the spray drying method offers advantages such as simple operation and high production efficiency. This study is conducted to improve the preparation efficiency of porous silica (SiO2) microspheres and achieve their large-scale production.
Methods The spherical and branched silica sols were passed through a cation exchange resin to remove alkali metal ions, rendering the treated silica sols acidic (pH=2~3). Based on the principles of the spray drying technique, the process parameters were set as follows: drying temperature 150 ℃ , atomization pressure 0. 2 MPa, and feed rate 20 mL/min. After parameter adjustment, the fan, heater, and air compressor were turned on in sequence. Once the temperature reached 150 ℃, the peristaltic pump was switched on to deliver the silica sol into the spray dryer at the preset flow rate. The silica sol was atomized into finedroplets through the atomizer nozzle, which rapidly lost moisture upon contact with hot air in the drying chamber, forming solid SiO₂ particles (porous SiO₂ microspheres). The dried powder product was collected after passing through the cyclone separator.The morphology and particle size distribution of the microspheres after spray drying were observed via optical microscopy. Their morphology was further examined by scanning electron microscopy (SEM). The specific surface area, average pore size, andpore volume were measured using the Brunauer-Emmett-Teller (BET) method.
Results and Discussion After spray drying spherical silica sol, the resulting porous SiO₂ microspheres exhibited defects such as collapse and fracture, and the severity of these defects increased with larger particle sizes of the spherical silica sol. In contrast,short-branched silica sol yielded microspheres with excellent sphericity, with the highest specific surface area reaching up to 789. 51 m²·g⁻¹ and a pore size distribution ranging from 1 to 10 nm. Using short-branched silica sol as a reinforcing agent could improve the sphericity of porous SiO₂ microspheres obtained from spray-dried long-branched silica sol. By adjusting the dosage of short-branched silica sol, the specific surface area, pore size, and pore size distribution of the microspheres could be effectively controlled.
Conclusion For the pressure spray drying processes, the branched silica sol exhibited a higher spherization rate than the spherical silica sol. Porous SiO₂ microspheres produced with branched silica sol as the raw material showed a larger specific surface area and a narrower pore size distribution. Short-branched silica sol with smaller diameters produced porous SiO₂ microspheresof good sphericity, large specific surface area, and narrow pore size distribution after spray drying. In contrast, long-branched silica sol with larger diameters tended to form porous SiO₂ microspheres that were prone to fracture and incomplete structures.Through blending with smaller-diameter short-branched silica sol, the spherization rate could be improved, while the specific surface area and pore size of the porous SiO₂ microspheres could be tuned.
Keywords:spray drying; porous silica microsphere; silica sol
[1]XIA H J, WANG L, LI C Y, et al. Synthesis of fully porous silica microspheres with high specific surface area for fast HPLC separation of intact proteins and digests of ovalbumin [J]. Microchimica Acta,2020,187(7):382.
[2]YEOM J, SHIM W S, KANG N G. Eco-friendly silica microcapsules with improved fragrance retention [J]. Applied Sci⁃ences,2022,12(13):6759.
[3]CAI G, NI H S, LI X, et al. Eco-friendly fabrication of highly stable silica aerogel microspheres with core-shell struc⁃ture[J].Polymers,2023,15(8):1882.
[4]GAC W, ZAWADZKI W, SŁOWIK G, et al. Nickel catalysts supported on silica microspheres for CO2methanation[J].Microporous and Mesoporous Materials,2018,272:79-91.
[5]CHEN J J, LI H J, ZHOU X H, et al. Efficient synthesis of hollow silica microspheres useful for porous silica ceramics[J].Ceramics International,2017,43(16):13907-13912.
[6]ZHANG D G, SHU Q, ZHANG Y, et al. Hollow silica microspheres/graphene and silica@titanium dioxide core-shell micro⁃spheres/graphene as enhanced lithium-ion battery anodes[J]. Journal of Applied Electrochemistry,2024,55(1):35-51.
[7]QIN L L, WANG H X, LIU S Q. Hollow silica microspheres as the stationary phase for thin layer chromatographic separa⁃tion of a model mixture [J]. Arabian Journal of Chemistry,2017,10: S3515-S3522.
[8]HU Y N, HAO D X, GONG F L, et al. Facile one-pot emulsion/sol-gel method for preparing wrinkled silica microspheres[J]. Particuology,2021,56:33-42.
[9]KONG M Y, WEI K X, TAN N, et al. Study on the regulation mechanism of tunable characteristics of porous silica micro⁃spheres synthesized via micelle templating method[J]. Journal of Non-Crystalline Solids,2024,628:122859.
[10]DU C Q, HUANG Y Y, TANG W J, et al. Spray dried VCrO/SiO2micro-spheroidal catalyst for the ammoxidation of p-chlorotol-uene[J]. Research on Chemical Intermediates,2023,49(12):5361-5374.
[11]STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
[12]程晨,杜仕国,鲁彦玲. 单分散二氧化硅微球的制备及其生长趋势[J]. 中国粉体技术,2018,24(5):28-34.
CHENG C, DU S G, LU Y L. Synthesis and growth tendency of monodisperse silica microsphere[J]. China Powder Scienceand Technology,2018,24(5):28-34.
[13]JAFARI S M, ARPAGAUS C, CERQUEIRA M A, et al. Nano spray drying of food ingredients; materials, processing and applications [J]. Trends in Food Science & Technology,2021,109:632-646.
[14]JOKICEVIC K, KIEKENS S, BYL E, et al. Probiotic nasal spray development by spray drying [J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,159:211-220.
[15]IHALAINEN M, KORTELAINEN M, MESCERIAKOVAS A, et al. Synthesis of solid NMC622 particles by spray drying,post-annealing and lithiation [J]. Advanced Powder Technology,2023,34(10):104187.
[16]NANDIYANTO A B D, OKUYAMA K. Progress in developing spray-drying methods for the production of controlled mor⁃phology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology,2011,22(1):1-19.
[17]LINTINGRE E, LEQUEUX F, TALINI L, et al. Control of particle morphology in the spray drying of colloidal suspensions [J]. Soft Matter,2016,12(36):7435-7444.
[18]CHEN X, ZHENG B C, SHEN J. Morphologies of polymer grains during spray drying[J]. Drying Technology,2013,31(4):433-438.
[19]ZHAO S L, XIE J R, GAN Y X, et al. Role of hydrophobic attraction and hydrophobic nanoconfined channels in the spray drying process for synthesizing hollow microspheres from silica sol[J]. Industrial & Engineering Chemistry Research,2023,62(36):14358-14368.
[20]FAN X, LI S D, WU Y H, et al. Large-scale preparation of macro-porous silica microspheres via sol-gel composite par⁃ticles and a spray drying process[J]. RSC Advances,2017,7(88):56081-56086.
[21]BELBEKHOUCHE S, POOSTFOROOSHAN J, SHABAN M, et al. Fabrication of large pore mesoporous silica micro⁃spheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment[J].Interational Journal of Pharmaceutics,2020,590:119930.
[22]曹永杰,刘伟,陈爱平,等. 碳化法制备微米级球形多孔二氧化硅[J].中国粉体技术,2022,28(2):121-132.
CAO Y J, LIU W, CHEN A P, et al. Preparation of micron-sized spherical porous silica by carbonization method[J].China Powder Science and Technology,2022,28(2):121-132.