ISSN 1008-5548

CN 37-1316/TU

最新出版

由催化剂颗粒引起的烟气轮机单动叶片的冲蚀特征

Erosion characteristics of single-moving blade of flue gas turbine caused by catalyst particles


王琦1, 王建军1, 许伟伟1, 杨芳婷1, 万德海1, 许明德2, 宋海涛2, 凤孟龙2

1. 中国石油大学(华东) 石大山能新能源学院, 山东 青岛 266580; 2.中石化石油化工科学研究院有限公司, 北京 100083


引用格式:

王琦, 王建军, 许伟伟, 等. 由催化剂颗粒引起的烟气轮机单动叶片的冲蚀特征[J]. 中国粉体技术, 2026, 32(2): 1-14.

WANG Qi, WANG Jianjun, XU Weiwei, et al. Erosion characteristics of single-moving blade of flue gas turbine caused by catalyst particles[J]. China Powder Science and Technology, 2026, 32(2): 1-14.

DOI:10.13732/j.issn.1008-5548.2026.02.015

收稿日期: 2025-01-01, 修回日期: 2025-06-02, 上线日期: 2025-09-17。

基金项目: 国家自然科学基金项目,编号:52476043。

第一作者简介: 王琦(2000—),女,硕士生,研究方向为气固-气液、 多相流动过程及旋流分离技术。E-mail:2304842241@qq.com。

通信作者简介: 王建军(1971—),男,副教授,博士,硕士生导师,研究方向为气固-气液、 多相流动过程及旋流分离技术。E-mail:wangjj01@upc.edu.cn。


摘要: 【目的】 为了减少炼油厂催化裂化装置中烟气轮机的动叶片由入口处烟气中的催化剂颗粒造成的冲蚀磨损,提高烟气轮机运行的稳定性和可靠性,避免发生设备停工检修故障,实现对动叶片冲蚀磨损的有效防控。【方法】 采用白色光固化丙烯酸树脂制得单动叶片实验模型,通过涂抹黑、黄、绿3种颜色的树脂漆用以观察单动叶片的冲蚀区域;以SiC颗粒模拟催化剂颗粒,构建了单动叶片的绕流冷态冲蚀实验装置;研究了测试管道中的空气体积流量、催化剂颗粒体积质量、催化剂颗粒粒径对单动叶片的冲蚀区域的影响;以失质量率作为单动叶片所受到的冲蚀程度的评价指标,采用熵值法计算了测试管道中的空气体积流量、空气速度、催化剂颗粒粒径对单动叶片所受到的冲蚀程度影响的权重。【结果】 单动叶片的冲蚀区域主要集中于压力面,随着冲蚀时间、空气体积流量、催化剂颗粒体积质量、催化剂颗粒粒径的增大,单动叶片冲蚀区域和冲蚀程度逐渐变化,冲蚀区域从叶顶向叶根沿叶高方向、从前缘向后缘沿弦长方向不断扩展。随着空气体积流量、颗粒体积质量、颗粒粒径的增大,SiC颗粒导致的单动叶片的失质量率均不断增大。当SiC颗粒的中位粒径D50为275 μm、空气体积流量为1 600 m3/h时,单动叶片的失质量率达到0.46%;当颗粒体积质量为80 g/m3时,SiC颗粒的D50为188 μm 时单动叶片的失质量率达到0.38%;当SiC颗粒体积质量为80 g/m3、测试管道中颗粒粒径为600 μm时,单动叶片的失质量率达到0.64%。 测试管道中空气体积流量、颗粒体积质量、颗粒粒径的权重分别是31.4%、25.0%、43.6%;颗粒粒径的权重最大,颗粒体积质量的权重最小,说明颗粒粒径对单动叶片失质量率的影响最大,颗粒体积质量对单动叶片失质量率的影响最小。【结论】 冲蚀区域和冲蚀程度共同反映了催化剂颗粒对单动叶片的冲蚀特征,分析催化剂颗粒对烟气轮机单动叶片的冲蚀特征以及影响因素,有助于提升烟气轮机运行稳定性与使用寿命。

关键词: 烟气轮机; 单动叶片; 催化剂颗粒; 冲蚀区域; 冲蚀程度; 失质量率; 冲蚀特征

Abstract

Objective To reduce the erosion wear of the moving blades of flue gas turbines caused by catalyst particles in the inlet flue gas stream of refinery catalytic cracking units, enhance the operational stability and reliability of flue gas turbines, and avoid equipment shutdowns for maintenance, it is essential to achieve effective prevention and control of erosion wear in moving blades.

Methods In this study, a single-moving blade of a flue gas turbine was taken as the research object. An experimental model of the blade was established using white light-cured acrylic resin, and black, yellow, and green resin paints were applied to visually identify the erosion areas on the blade surface. Silicon carbide (SiC) particles were used to simulate catalyst particles, and a cold-flow erosion experimental setup was established. The effects of air flow rate, catalyst particle volume concentration, and catalyst particle size in the test pipeline on the erosion areas of a single-moving blade were studied. The mass loss rate was used as an evaluation metric for the degree of erosion experienced by the blade, and the entropy evaluation method (EEM) was adopted to determine the weight values of the influence of air flow rate, air velocity, and catalyst particle size in the test pipeline on erosion degree of the single-moving blade.

Results and Discussion The erosion areas of the single-moving blade were primarily concentrated on the pressure surface. The erosion area and the degree of erosion exhibited progressive changes as erosion time, air flow rate, catalyst particle volume concentration, and particle size increased. The erosion area expanded from the blade tip to the root along the blade height direction and from the leading edge to the trailing edge along the chord direction. The leading edge wore out first, with the erosion area initially appearing black, then gray, and finally white as it spread from the upper part to the blade root along the blade height direction, indicating the most severe erosion. The wear at the blade tip occurred slightly later compared to the leading edge, with the erosion degree gradually decreasing from the leading edge to the trailing edge along the chord direction, transitioning from a mixed yellow-green color to black and then gray, reflecting relatively severe erosion. The trailing edge wore out later than the tip, with the erosion area spreading gradually from the upper part to the middle part along the blade height direction, displaying a mixed yellow-green-black color, indicating the mildest erosion. The mass loss fraction of the single-moving blade caused by SiC particles increased with elevated air flow rate, particle volume concentration, and particle size. When SiC particles had a median particle size (D50) of 275 μm and an air flow rate of 1 600 m³/h, the maximum mass loss fraction reached 4.6 mg/g. At a particle volume concentration of 80 g/m³ and D50 of 188 μm, the mass loss fraction peaked at 3.8 mg/g. When the SiC particle volume concentration was 80 g/m³ and the particle size in the test pipeline was 600 μm, the maximum mass loss fraction reached 6.4 mg/g. The weight values of air flow rate, particle volume concentration, and particle size in the test pipeline were 31.4%, 25%, and 43.6%, respectively. The particle size exhibited the highest weight value, while the particle volume concentration had the lowest, indicating that particle size had the greatest influence on the mass loss fraction of the single moving blade, whereas particle volume concentration had the least influence.

Conclusion The erosion areas and the degree of erosion collectively reflect the erosion characteristics caused by catalyst particle sizes on the single-moving blade. Analyzing the erosion characteristics of catalyst particles on the single-moving blade of a flue gas turbine and their influencing factors provides critical insights for enhancing turbine’s operational stability and service life.

Keywords: flue gas turbine; single-moving blade; catalyst particle; erosion area; degree of erosion; mass loss rate; erosion characteristics


参考文献(References)

[1]刘光奎, 孙思聪, 梁奎, 等. 催化剂颗粒粒径对烟气轮机流场影响的模拟研究[J]. 热能动力工程, 2022, 37(6): 77-82, 144.

LIU G K, SUN S C, LIANG K, et al. Simulation study on the effect of catalyst particle diameter on flow field in a flue gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(6): 77-82, 144.

[2]凌志光, 姜小敏, 鲁嘉华. 我国烟气轮机的发展和两相流气动设计及冲蚀预测研究[J]. 上海工程技术大学学报, 2019, 33(3): 267-271.

LING Z G, JIANG X M, LU J H. Development of particle-laden gas turbine in China and study on two phase flow aerodynamic design and erosion prediction[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3): 267-271.

[3]李金宝, 马川, 刘立君, 等. 含砂气流冲蚀下盲三通的减磨特性数值分析[J]. 天然气与石油, 2022, 40(6): 101-107.

LI J B, MA C, LIU L J, et al. Numerical analysis of wear reduction characteristics of blind tee under sand-laden flow erosion[J]. Natural Gas and Oil, 2022, 40(6): 101-107.

[4]周亚东, 滕振超, 刘凯琪, 等. 水砂两相流弯管接头处冲蚀磨损研究[J]. 当代化工, 2022, 51(7): 1695-1699, 1737.

ZHOU Y D, TENG Z C, LIU K Q, et al. Research on erosion wear at elbow joint of water-sand two-phase flow[J]. Contem-porary Chemical Industry, 2022, 51(7): 1695-1699, 1737.

[5]李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.

LI Q, TANG X, LI Y. Progress in research methods for erosion-corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(5): 399-409.

[6]潘牧, 罗志平. 材料的冲蚀问题[J]. 材料科学与工程, 1999, 17(3): 92-96.

PAN M, LUO Z P. Erosion of materials[J]. Materials Science and Engineering, 1999, 17(3): 92-96.

[7]董刚, 张九渊. 固体粒子冲蚀磨损研究进展[J]. 材料科学与工程学报, 2003, 21(2): 307-312.

DONG G, ZHANG J Y. Developments of reserch on the solid particle erosion of materials[J]. Journal of Materials Science and Engineering, 2003, 21(2): 307-312.

[8]李德顺, 梁恩培, 李银然, 等. 风力机叶片涂层风沙冲蚀磨损特性的风洞试验研究[J]. 太阳能学报, 2022, 43(6): 196-203.

LI D S, LIANG E P, LI Y R, et al. Wind tunnel experimental study on erosion and wear characteristics of wind turbine blade coating[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 196-203.

[9]杜国正. 风力机叶片涂层风沙冲蚀室的设计及试验研究[D]. 呼和浩特: 内蒙古农业大学, 2020.

DU G Z. Design and experimental study of wind erosion chamber of wind turbine blade coating[D]. Hohhot: Inner Mongolia Agricultural University, 2020.

[10]高津. 风沙环境下风力机叶片涂层冲蚀磨损分区的研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

GAO J. Study on coatings wear partition of wind turbine blade by wind-borne sands[D]. Hohhot: Inner Mongolia Agricultural University, 2019.

[11]张永, 黄超, 刘召, 等. 挟沙风作用下风力机叶片涂层冲蚀特性研究[J]. 材料导报, 2016, 30(10): 95-99.

ZHANG Y, HUANG C, LIU Z, et al. Research on erosion properties of wind turbine blade coating under the wind-carryingaction[J]. Materials Review, 2016, 30(10): 95-99.

[12]陈倩萍. 风机叶片材料磨损试验的研究[J]. 流体机械, 2014, 42(8): 12-15, 11.

CHEN Q P. Wear test research on fan blade materials[J]. Fluid Machinery, 2014, 42(8): 12-15, 11.

[13]LAGUNA-CAMACHO J R, VILLAGRÁN-VILLEGAS L Y, MARTÍNEZ-GARCÍA H, et al. A study of the wear damage on gas turbine blades[J]. Engineering Failure Analysis, 2016, 61: 88-99.

[14]ZHANG H W, DONG X H, CHEN S G. Solid particle erosion-wear behaviour of Cr3C2-NiCr coating on Ni-based superalloy[J]. Advances in Mechanical Engineering, 2017, 9(3): 16878140-17694580.

[15]KHURANA S, VARUN, KUMAR A. Effect of silt particles on erosion of Turgo impulse turbine blades[J]. International Journal of Ambient Energy, 2014, 35(3): 155-162.

[16]CORSINI A, RISPOLI F, VENTURINI P, et al. Numerical modelling of erosion in highly-loaded axial flow fans[C]//ASME 2012 Gas Turbine India Conference. Mumbai, Maharashtra, India, 2012: 793.

[17]HAMED A, TABAKOFF W C, WENGLARZ R V. Erosion and deposition in turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): 350-360.

[18]GHENAIET A, TAN S C, ELDER R L. Experimental investigation of axial fan erosion and performance degradation[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2004, 218(6): 437-450.

[19]朱喜安, 魏国栋. 熵值法中无量纲化方法优良标准的探讨[J]. 统计与决策, 2015, 31(2): 12-15.

ZHU X A, WEI G D. Discussion on the excellent standard of dimensionless method in entropy method[J]. Statistics & Decision, 2015, 31(2): 12-15.

[20]BIGLARIAN M, MOMENILARIMI M, GANJI B, et al. Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(2): 106.

[21]陈帅甫, 郭颖, 王建军, 等. 烟气轮机级内气固两相流场特性PIV实验[J]. 高校化学工程学报, 2018, 32(1): 67-76.

CHEN S F, GUO Y, WANG J J, et al. PIV experiments on gas-solid two-phase flow in a flue gas turbine[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 67-76.

[22]谭慧敏, 王建军, 金有海. 催化裂化烟气轮机级叶栅内气固两相运动特性的数值研究[J]. 汽轮机技术, 2012, 54(6):437-441.

TAN H M, WANG J J, JIN Y H. Numerical simulation of gas-solid two-phase flows in stage cascade of flue gas turbine used for FCC unit[J]. Turbine Technology, 2012, 54(6): 437-441.

[23]张笑笑. 催化剂颗粒在烟机内沉积过程的数值研究[D]. 东营: 中国石油大学(华东), 2018.

ZHANG X X. Numerical study on the deposition process of catalyst particles in flue gas turbine[D]. Dongying: China University of Petroleum (East China), 2018.

[24]田宏涛. 水力机械过流部件材料及防护工艺的抗泥沙磨蚀性能实验研究[D]. 西安: 西安理工大学, 2019.

TIAN H T. Experimental study on sand abrasion resistance of materials and protection technology for overflow parts of hydraulic machinery[D]. Xi’an: Xi’an University of Technology, 2019.