韩会丽, 谢科程, 赵英泰, 王余莲, 孙浩然, 张志彬, 袁志刚
沈阳理工大学 材料科学与工程学院, 辽宁 沈阳110159
引用格式:
韩会丽, 谢科程, 赵英泰, 等. 不同分散剂对含碳酸盐混合磁选精矿的分散特性的影响[J]. 中国粉体技术, 2026, 32(2): 1-12.
HAN Huili, XIE Kecheng, ZHAO Yingtai, et al. Influence of different dispersants on dispersion characteristics of carbonate-containing mixed magnetic concentrates[J]. China Powder Science and Technology, 2026, 32(2): 1-12.
DOI:10.13732/j.issn.1008-5548.2026.02.007
收稿日期: 2024-12-14, 修回日期: 2025-07-03, 上线日期: 2025-09-17。
基金项目: 国家自然科学基金项目,编号: 52374271; 辽宁省教育厅项目,编号: LJKMZ20220588; 沈阳理工大学引进高层次人才科研支持计划,编号: 1010147001202; 沈阳理工大学大学生创新训练计划项目,编号: X202310144037/X202310144182。
第一作者简介: 韩会丽(1991—),女,讲师,博士,研究方向为难选铁矿石高效利用。E-mail:huili.han@qq.com。
通信作者简介: 王余莲(1986—),女,教授,博士,硕士生导师,研究方向为矿物材料制备及应用。E-mail:ylwang0908@163.com。
摘要: 【目的】 为了提高含碳酸盐难选铁矿石的分选效率,实现对复杂难选铁矿资源的高效利用,研究在分散剂作用下含碳酸盐混合磁选精矿矿浆的分散性能和分散机制。【方法】 以东鞍山烧结厂的混合磁选精矿为研究对象,自主设计分散实验装置,在进行矿样分析的基础上,考察小分子有机分散剂(柠檬酸、 苹果酸、 丁烷四羧酸)、 大分子有机分散剂[羧甲基纤维素钠(CMC-Na)]和无机分散剂(硅酸钠、 六偏磷酸钠)对混合磁选精矿矿浆的分散作用,研究不同分散剂对矿浆的分散度、 浊度、 粒度分布和矿样聚集态的影响,揭示分散剂的分散机制。【结果】 混合磁选精矿矿样的全铁(total iron,TFe)品位(质量分数)为42.97%;矿样中粒径小于48 μm的颗粒的产率约为84%,微细颗粒间容易发生相互吸附和团聚现象,并黏附覆盖在铁矿物和脉石矿物粗颗粒的表面,造成该矿石分选困难。高分子有机分散剂CMC-Na和2种无机分散剂六偏磷酸钠、硅酸钠对混合磁选精矿矿浆的分散度小于35%,而苹果酸、 柠檬酸和丁烷四羧酸3种小分子分散剂对矿浆的分散度均大于46%;在柠檬酸、苹果酸和丁烷四羧酸的质量浓度为440 mg/L时矿浆浊度均达到最大值,分别为1 850、 1 900、 2 000 NTU;柠檬酸、苹果酸和丁烷四羧酸作用后的矿浆中颗粒的D50分别为21.98、20.97、19.67 μm,D90分别为64.73、62.69、61.65 μm,3种分散剂均减小了矿浆颗粒的表观尺寸。【结论】 矿浆添加3种有机小分子分散剂柠檬酸、苹果酸和丁烷四羧酸后,触发了静电斥力、水化斥力、空间位阻的三重作用,协同打破了微细颗粒间的团聚与黏附覆盖状态,使颗粒从聚集态转为单分散态,导致了矿浆的分散度、浊度增大,矿样的粒度减小。
关键词: 磁选精矿; 分散剂; 分散特性; 分散度; 浊度; 粒度
Abstract
Objective To improve the separation efficiency of carbonate-containing refractory iron ore and achieve efficient utilization of complex and refractory iron ore resources, the dispersion performance and mechanism of carbonate-containing mixed magnetic concentrate slurry treated with different dispersants are studied, providing a basis for the application of dispersants in refractory ore separation.
Methods The mixed magnetic concentrate from the Dong'anshan Sintering Plant was used as the research object, and a dispersion experimental device was independently designed. Based on mineral sample analysis, the dispersion effects of small-molecule organic dispersants (citric acid, malic acid, butane tetracarboxylic acid), a large-molecule organic dispersant (sodium carboxymethyl cellulose), and inorganic dispersants (sodium silicate, sodium hexametaphosphate) on the slurry were investigated. The effects of different dispersants on the slurry’s dispersibility, turbidity, particle size distribution, and aggregation state were studied, revealing the dispersion mechanism of these dispersants.
Results and Discussion The total iron (TFe) grade of the mixed magnetic concentrate sample was 42.97%. The yield of particles with a particle size smaller than 48 μm in the ore sample was about 84%, of which particles smaller than 23 μm were about 45%. The particle size of Fe was mainly less than 37 μm, with a metal distribution rate of over 80%. Fine particles were prone to mutual adsorption and agglomeration, adhering to the coarse particle surface of useful iron minerals and gangue minerals, making ore separation difficult. The addition of dispersants enhanced the dispersibility of the mixed magnetic concentrate slurry. The dispersion degree of the slurry treated with the polymer organic dispersant CMC-Na and two inorganic dispersants, sodium hexametaphosphate and sodium silicate, was less than 35%, while the dispersion degree for the three small-molecule dispersants, malic acid, citric acid, and butanetetracarboxylic acid, was greater than 46%, demonstrating stronger dispersion effects. These dispersants also exhibited advantages such as good water solubility, high efficiency, non-toxicity, low cost, and wide availability. When the mass concentration of citric acid, malic acid, and butanetetracarboxylic acid was 440 mg/L, the slurry turbidity reached its maximum values of 1 850, 1 900, and 2 000 NTU, respectively. Under the influence of these three small-molecule organic dispersants, a large number of fine particles were restored from an agglomerated state to a single particle state, enabling better dispersion in water and an increase in slurry turbidity. The D50 values of the slurry particles treated with citric acid, malic acid, and butanetetracarboxylic acid were 21.98, 20.97, and 19.67 μm, respectively, while the D90 values were 64.73, 62.69, and 61.65 μm, respectively. All three dispersants reduced the apparent size of the slurry particles.
Conclusion After adding the three small-molecule organic dispersants—citric acid, malic acid, and butanetetracarboxylic acid—to the slurry, a combined effect of electrostatic repulsion, hydration repulsion, and steric hindrance was induced. This synergistic action broke the agglomeration and surface adhesion among fine particles, causing them to transition from an aggregated state to a monodispersed state. As a result, the dispersion and turbidity of the slurry increased while the particle size decreased.
Keywords: magnetic concentrate; dispersant; dispersion characteristics; dispersion degree; turbidity; particle size
参考文献(References)
[1]韩跃新, 孙永升, 李艳军, 等. 我国铁矿选矿技术最新进展[J]. 金属矿山, 2015(2): 1-11.
HAN Y X, SUN Y S, LI Y J, et al. New development on mineral processing technology of iron ore resources in China[J]. Metal Mine, 2015(2): 1-11.
[2]刘杰, 周明顺, 翟立委, 等. 中国复杂难选铁矿的研究现状[J]. 中国矿业, 2011, 20(5): 63-66, 83.
LIU J, ZHOU M S, ZHAI L W, et al. Present status of China’s complex refractory iron ore study[J]. China Mining Magazine, 2011, 20(5): 63-66, 83.
[3]任俊, 沈健, 卢寿慈. 颗粒分散科学与技术[M]. 2版. 北京: 化学工业出版社, 2021.
REN J, SHEN J, LU S C. Particle dispersion science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2021.
[4]沙菲, 王滨, 杨力. 纳米粉体的团聚、 分散及表面改性[C]//上海市颗粒学会. 上海市颗粒学会2005年年会论文集. 上海, 2005: 58-62.
SHA F, WANG B, YANG L. Agglomeration, disperasion and surface modification of nano-powders [C]//Shanghai Particle Society. Proceedings of the Annual Conference of Shanghai Particle Society, 2005: 58-62.
[5]卢毅屏, 张明强, 冯其明, 等. 蛇纹石与黄铁矿间的异相凝聚/分散及其对浮选的影响[J]. 矿冶工程, 2010, 30(6): 42-45.
LU Y P, ZHANG M Q, FENG Q M, et al. Heterocoagulation/dispersion between serpentine and pyrite and its influence on flotation[J]. Mining and Metallurgical Engineering, 2010, 30(6): 42-45.
[6]李育彪, 杨旭, 朱虹嘉, 等. 六偏磷酸钠及硅酸钠对海水浮选黄铜矿的影响机理[J]. 金属矿山, 2020(10): 135-140.
LI Y B, YANG X, ZHU H J, et al. Influencing mechanisms of sodium hexametaphosphate and sodium silicates in sea water flotation of chalcopyrite[J]. Metal Mine, 2020(10): 135-140.
[7]SILVESTRE M O, PEREIRA C A, GALERY R, et al. Dispersion effect on a lead-zinc sulphide ore flotation[J]. Minerals Engineering, 2009, 22(9/10): 752-758.
[8]SONG S, LOPEZ-VALDIVIESO A, MARTINEZ-MARTINEZ C, et al. Improving fluorite flotation from ores by dispersion processing[J]. Minerals Engineering, 2006, 19(9): 912-917.
[9]LIU D, PENG Y J. Understanding different roles of lignosulfonate in dispersing clay minerals in coal flotation using deionised water and saline water[J]. Fuel, 2015, 142: 235-242.
[10]GAN W B, CROZIER B, LIU Q. Effect of citric acid on inhibiting hexadecane-quartz coagulation in aqueous solutions containing Ca2+, Mg2+ and Fe3+ ions[J]. International Journal of Mineral Processing, 2009, 92(1/2): 84-91.
[11]DE SÃO JOSÉ F, IMBELLONI A M, NOGUEIRA F C, et al. Nickel ore dispersion evaluation and consequences in flotation process[J]. Metallurgical and Materials Transactions B, 2016, 47(2): 899-904.
[12]XU Y B, XU L H, WU H Q, et al. The effect of citric acid in the flotation separation of bastnaesite from fluorite and calcite using mixed collectors[J]. Applied Surface Science, 2020, 529: 147166.
[13]DONG L Y, QIAO L D, ZHENG Q F, et al. Enhanced adsorption of citric acid at the calcite surface by adding copper ions:flotation separation of scheelite from calcite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 131036.
[14]LIU C, ZHOU M, XIA L, et al. The utilization of citric acid as a depressant for the flotation separation of barite from fluorite[J]. Minerals Engineering, 2020, 156: 106491.
[15]郭玉国, 谭葵田, 张亚利, 等. 1, 2, 3, 4-丁烷四羧酸的研究展望[J]. 青岛大学学报(工程技术版), 2000, 15(2): 35-42.
GUO Y G, TAN K T, ZHANG Y L, et al. Research advance of 1, 2, 3, 4-butanetetracarboxylic acid[J]. Journal of Qingdao University (Engineering and Technology Edition), 2000, 15(2): 35-42.
[16]HU X S, WANG C Y, YU H Y. Study on water-absorbing behaviors of superabsorbent polymer enhanced by 1, 2, 3, 4-butane tetracarboxylic acid cross-linker[J]. Reactive and Functional Polymers, 2024, 194: 105776.
[17]何嘉宁, 张少杰, 邓忠诚, 等. 四种羟基羧酸对含钙矿物浮选的影响[J]. 金属矿山, 2022(4): 115-121.
HE J N, ZHANG S J, DENG Z C, et al. Effects of four hydroxyl carboxylic acids on flotation of calcium minerals[J]. Metal Mine, 2022(4): 115-121.
[18]高志勇, 向国源, 苗泽坤, 等. 一种含磷锂矿反浮选脱磷的复合抑制剂、浮选药剂和方法: CN115430526B[P]. 2024-11-12.
GAO Z Y, XIANG G Y, MIAO Z K, et al. Composite inhibitor, flotation reagent and method for reverse flotation dephosphorization of phosphorus-containing lithium ore: CN115430526B[P]. 2024-11-12.
[19]桂婉婷, 雷大士, 王宇斌, 等. 铅离子协同苹果酸抑制滑石可浮性的机理研究[J]. 矿产保护与利用, 2023, 43(6): 86-94.
GUI W T, LEI D S, WANG Y B, et al. Inhibition mechanism of lead ions synergized with malic acid on talc[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 86-94.
[20]黄蓉, 刘建, 杨东, 等. CMC在硫化矿浮选中的抑制作用及其抑制性能影响因素[J]. 工程科学学报, 2024, 46(4): 627-636.
HUANG R, LIU J, YANG D, et al. Depression effect of CMC on sulfide ore flotation and its influencing factors[J]. Chinese Journal of Engineering, 2024, 46(4): 627-636.
[21]WANG C T, ZHAI Q L, LIU R Q, et al. Surface modification with hydroxyl calcium ions strengthen CMC selectively depress arsenopyrite: bridging adsorption mechanism and application in Cu-As separation[J]. Applied Surface Science, 2023, 618: 156642.
[22]胡岳华, 陈湘清, 王毓华. 磷酸盐对一水硬铝石和高岭石浮选的选择性作用[J]. 中国有色金属学报, 2003, 13(1):222-228.
HU Y H, CHEN X Q, WANG Y H. Influences of phosphates on diaspore and kaolinite flotation[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1): 222-228.
[23]张汉泉, 许鑫, 陈官华, 等. 六偏磷酸钠在磷矿浮选中的应用及作用机理[J]. 矿产保护与利用, 2020, 40(6): 58-63.
ZHANG H Q, XU X, CHEN G H, et al. Application and mechanism of sodium hexametaphosphate in phosphate ore flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 58-63.
[24]王成行, 童雄, 孙吉鹏. 水玻璃在选矿中的应用与前景的分析[J]. 国外金属矿选矿, 2008, 45(10): 6-10.
WANG C X, TONG X, SUN J P. Application and prospect analysis of sodium silicate in mineral processing[J]. Metallic Ore Dressing Abroad, 2008, 45(10): 6-10.
[25]李俊, 吴艳芬, 李朝晖, 等. 降低浊度仪杂散光影响,提高低浊度测量精度[J]. 计量与测试技术, 2024, 51(4): 59-62, 65.
LI J, WU Y F, LI C H, et al. Reduce the influence of stray light of turbidity meter and improve the measurement accuracy of low turbidity[J]. Metrology & Measurement Technique, 2024, 51(4): 59-62, 65.
[26]KITCHENER B G, WAINWRIGHT J, PARSONS A J. A review of the principles of turbidity measurement[J]. Progress in Physical Geography: Earth and Environment, 2017, 41(5): 620-642.
[27]HAN H L, WANG Y L, RAO F, et al. Role of citric acid in selective flotation of limonite from quartz using sodium oleate as collector[J]. Separation and Purification Technology, 2025, 355: 129650.
[28]HAN H L, YIN W Z, WANG D H, et al. New insights into the dispersion mechanism of citric acid for enhancing the flotation separation of fine siderite from hematite and quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128459.
[29]XING Y W, GUI X H, CAO Y J. Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions[J]. Journal of Central South University, 2018, 25(6): 1295-1305.
[30]FARROKHPAY S. A review of polymeric dispersant stabilisation of titania pigment[J]. Advances in Colloid and Interface Science, 2009, 151(1/2): 24-32.