ISSN 1008-5548

CN 37-1316/TU

最新出版

超细颗粒在烟气轮机叶片表面沉积特性的实验与数值模拟

Experiments and numerical simulationson deposition characteristics of ultrafine particles on gas turbine blade surfaces


郭颖a, 张意岚b, 王建军b, 许伟伟b, 畅元江a, 刘洋b

中国石油大学(华东) a.机电工程学院, b.新能源学院, 山东 青岛 266580


引用格式:

郭颖, 张意岚, 王建军, 等. 超细颗粒在烟气轮机叶片表面沉积特性的实验与数值模拟[J]. 中国粉体技术, 2026, 32(3): 1-14.

GUO Ying, ZHANG Yilan, WANG Jianjun, et al. Experiments and numerical simulationson deposition characteristics of ultrafine particles on gas turbine blade surfaces[J]. China Powder Science and Technology, 2026, 32(3): 1-14.

DOI:10.13732/j.issn.1008-5548.2026.03.001

收稿日期: 2025-03-31, 修回日期: 2025-06-30,上线日期: 2025-09-08。

基金项目: 国家自然科学基金项目,编号:52476043。

第一作者简介: 郭颖(1976—),女,讲师,博士生,研究方向为安全工程及机械设计、多相流动与分离技术。E-mail:Guoying1976@upc.edu.cn。

通信作者简介: 王建军(1971—),男,副教授,博士,硕士生导师,研究方向为气固-气液、多相流动过程及旋流分离技术。E-mail:wangjj01@upc.euc.cn。


摘要: 【目的】 为了研究烟气轮机内催化剂颗粒结垢机制,探讨超细颗粒在烟气轮机叶片表面的沉积特性。【方法】 结合实验与数值模拟方法,调节单叶片绕流沉积实验装置中的入口流量、入口颗粒浓度、叶片表面粗糙度及壁面材质,分析颗粒在叶片表面的沉积特性;实验研究采用单叶片绕流沉积装置,数值模拟使用Fluent软件,以及RNG k-ε湍流模型和离散相模型(discrete phase model, DPM),基于临界应力模型、耦合滚动脱附模型,实现气固两相流场及动态沉积过程的求解。【结果】 通过分析实验与数值模拟结果,得到入口流量、入口颗粒浓度、叶片表面粗糙度以及壁面材质对颗粒沉积特性的影响机制,实验结果与数值模拟结果吻合度高;当加料质量浓度为40 g/m3、叶片表面粗糙度为0 μm时,随着入口流量增大,压力面上颗粒沉积加剧,脱附面积增大,吸力面上沉积区域基本不变;当入口体积流量为1 200 m3/h时,随着颗粒浓度增大,压力面与吸力面上的沉积质量都呈增大趋势;当入口体积流量为1 600 m3/h、加料质量浓度为40 g/m3时,各粗糙度下粒度分布基本相同,与入口颗粒粒度分布曲线几乎重合;与颗粒层壁面相比,金属壁面在压力面和吸力面上的脱附质量均较大。【结论】 表面粗糙度仅对初始沉积层的沉积质量有所影响,后续沉积特性由颗粒层主导;入口颗粒浓度的增大会使压力面和吸力面上的沉积质量都增加;入口流量对颗粒沉积呈双重影响,颗粒速度与接触应力的增大会促进沉积,气流剪切作用的增强导致脱附加剧;颗粒层的存在加剧脱附难度,促进沉积。

关键词: 超细颗粒; 颗粒沉积; 烟气轮机

Abstract

Objective In the modern petroleum refining industry, the flue gas turbine serves as a critical component in catalytic cracking units. However, ultrafine particles,smaller than 10 μm,that are not captured by the third-stage cyclone,tend to deposit on the surfaces of turbine blades. This leads to rotor dynamic imbalance and excessive shaft vibration, thereby compromising operational safety and significantly reducing both the energy recovery efficiency and economic performance of the unit. Therefore, it is crucial to investigate the gas-solid two-phase flow field within the flue gas turbine,as well as the dynamic behavior and deposition characteristics of particles on blade surfaces.

Methods The experiments were conducted in combination with numerical simulations. A cold-state laboratory model was employed to study particle deposition.High-viscosity talc powder was used to simulate the deposition characteristics of industrial gas turbine particles under high-temperature, low-concentration, and long-duration conditions by replicating a high-concentrati-on, short-duration gas-solid two-phase flow. A single-blade flow-around deposition device was constructed based on the actual structure of the gas turbine impeller. Experimental parameters,including inlet flow rate, inlet particle concentration, and blade surface roughness,were varied to analyze their effects on particle deposition behavior. Numerical simulations were conducted using Fluent software, employing the RNG k-ε turbulence model and the discrete phase model (DPM). A critical stress model, implemented through a user-defined function (UDF), was coupled with a rolling detachment model to simulate the gas-solid two-phase flow field and the dynamic deposition process.

Results and Discussion Using the single-blade flow-around deposition experimental device, the effects of blade surface roughness, inlet flow rate, and inlet particle concentration on particle deposition characteristics were investigated. When the blade surface roughness was varied, the deposition patterns on the pressure and suction sides remained largely unchanged under the given experimental conditions. Regarding deposition mass, the pressure side showed minimal variation with increasing roughness, while the suction side exhibited a slight decreasing trend. The particle size distribution of the deposited particles was largely unaffected by surface roughness. When the inlet flow rate increased, the deposition-free area on the edge of the pressure side expanded,while particle detachment decreased. On the suction side, the deposition area remained nearly unchanged,with a significantly smaller deposition thickness than that on the pressure side. Asthe inlet particle concentration increased, the deposition mass on the pressure side gradually increased, while that on the suction side first decreased and then increased. Numerical simulations were used to obtain the gas-phase flow field and particle trajectories. By setting the inlet flow rates to1 200 m3/h and 1 600 m3/h, the distributions of particle deposition and detachment mass were obtained, showing good agreement with the experimental results. Additionally, the effect of wall material on particle deposition was assessed. For the same particles, deposition onto an existing particle layerled to reduced detachment and enhanced particle deposition.

Conclusion Surface roughness primarily affects the formation of the initial deposition layer, while the subsequent deposition process is dominated by the particle layer. An increase in inlet particle concentration results in increased deposition mass on both the pressure and suction sides. The inlet flow rate exerts a dual effect on particle deposition: increased particle velocity and contact stress promote deposition, whereas enhanced airflow shear stress intensifies particle detachment. Once the particle layer is established, it reduces detachment difficulty and promotes further deposition.

Keywords: ultrafine particle; particle deposition; flue gas turbine


参考文献(References)

[1]陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望:催化裂化仍将发挥主要作用[J]. 石油学报(石油加工), 2003(1): 1-11.

CHEN J W, LU H W. Outlook on the status and role of catalytic cracking in refineries:catalytic cracking will continue to play a major role [J]. Journal of Petroleum Science(Petroleum Processing), 2003(1): 1-11.

[2]瞿国华. 21世纪中国炼油工业的重要发展方向:重质(超重质)原油加工[J]. 中外能源, 2007(3): 54-62.

QU G H. An important development direction of China’s refining industry in the 21st century:processing of heavy (ultra-heavy) crude oil[J]. Sino-Global Energy, 2007(3): 54-62.

[3]STELL J. 2001 worldwide refining survey[J]. Oil and Gas Journal, 2001, 99(52): 74-124.

[4]于晓红, 张来斌, 王朝晖. 炼油厂烟气轮机故障诊断的现状与发展方向[J]. 石油机械, 2006(8): 80-81.

YU X H, ZHANG L B, WANG Z H. Current status and development direction of fault diagnosis for flue gas turbines in refineries[J]. China Petroleum Machinery, 2006(8): 80-81.

[5]刘家海, 陈清林, 王伟, 等. 重油催化裂化装置节能措施与效果分析[J]. 炼油技术与工程, 2009, 39(3): 55-60.

LIU J H, CHEN Q L, WANG W, et al. Analysis of energy-saving measures and effects in heavy oil catalytic cracking units[J]. Petroleum Refinery Engineering, 2009, 39(3): 55-60.

[6]费达, 侯峰, 陈辉, 等. 催化裂化装置烟气轮机积垢及其增厚机理[J]. 化工学报, 2015, 66(1): 79-85.

FEI D, HOU F, CHEN H, et al. Fouling and thickening mechanism of flue gas turbines in catalytic cracking units[J]. Journal of Chemical Industry and Engineering, 2015, 66(1): 79-85.

[7]武文斌, 苗海滨, 任新广. 烟气轮机的状态监测与故障诊断实例分析[J]. 石油化工设备, 2010, 39(2): 74-77.

WU W B, MIAO H B, REN X G. Case analysis of condition monitoring and fault diagnosis for flue gas turbines[J]. Petrochemical Equipment, 2010, 39(2): 74-77.

[8]SHANKARA P S. CFD simulation and analysis of particulate deposition on gas turbine vanes[D].Columbus:The Ohio State University, 2009.

[9]ROMAY F J, TAKAGAKI S S, PUI D Y H, et al. Thermophoretic deposition of aerosol particles in turbulent pipe flow[J]. Journal of Aerosol Science, 1998, 29(8): 943-959.

[10]李金波, 王沛丽, 程林. 一种新型受热面飞灰颗粒的沉积特性[J]. 化工学报, 2016, 67(9): 3598-3606.

LI J B, WANG P L, CHENG L. Deposition characteristics of fly ash particles on a novel heating surface[J]. Journal of Chemical Industry and Engineering, 2016, 67(9): 3598-3606.

[11]林金贤, 林棋, 娄晨, 等. 气固两相流管道流动阻力特性数值模拟[J]. 油气储运, 2014, 33(1): 32-41.

LIN J X, LIN Q, LOU C, et al. Numerical simulation of flow resistance characteristics in gas-solid two-phase flow pipelines[J]. Journal of Oil and Gas Storage and Transportation, 2014, 33(1): 32-41.

[12]谭争国, 高雄厚, 李荻, 等. 催化裂化装置中旋风分离器和烟气轮机催化剂粘连结垢原因分析[J]. 石油炼制与化工, 2010, 41(4): 40-43.

TAN Z G, GAO X H, LI D, et al. Analysis of catalyst adhesion and fouling in cyclone separators and flue gas turbines of catalytic cracking units[J]. Petroleum Processing and Petrochemicals, 2010, 41(4): 40-43.

[13]LAYCOCK R G, FLETCHER T H. Time-dependent deposition characteristics of fine coal fly ash in a laboratory gas turbine environment[J]. Journal of Turbomachinery, 2013, 135(2): 021003.

[14]杜玉朋, 赵辉, 杨朝合, 等. 烟气轮机叶片间隙中FCC催化剂细粉运动规律:气相流场分布的影响[J]. 化学工程,2012, 40(7): 57-60.

DU Y P, ZHAO H, YANG C H, et al. Movement patterns of FCC catalyst fine particles in the blade clearance of flue gas turbines:influence of gas flow field distribution[J]. Chemical Engineering, 2012, 40(7): 57-60.

[15]GUHA A. A unified Eulerian theory of turbulent deposition to smooth and rough surfaces[J]. Journal of Aerosol Science, 1997, 28(8): 1517-1537.

[16]ABDOLZADEH M, MEHRABIAN A M, SOLGHAR A A. Prediction of particle deposition using a simplified particle model in fully developed channel flow[J]. Chemical Engineering Communications, 2015, 202(3): 294-302.

[17]THORNTON C, NING Z. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres[J]. Powder Technology, 1998, 99(2): 154-162.

[18]BRACH R M, DUNN P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology, 1992, 16(1): 51-64.

[19]CROSBY J M, LEWIS S, BONS J P, et al. Effects of particle size, gas temperature and metal temperature on high pressure turbine deposition in land based gas turbines from various synfuels[C]//ASME:Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 4: Turbo Expo 2007, Parts A and B.Montreal: ASME.2007, 47934: 1365-1376.

[20]WENGLARZ R A, FOXJR R G. Chemical aspects of deposition/corrosion from coal-water fuels under gas turbine conditions[J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(1): 1-8.

[21]SREEDHARANS S, TAFTID K. Composition dependent model for the prediction of syngas ash deposition in turbine gas hotpath[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 201-211.

[22]裴钰. 燃气轮机涡轮叶片表面污染物沉积模型研究[D]. 天津: 中国民航大学, 2016.

PEI Y. Research on the deposition model of contaminants on the surface of gas turbine blades[D]. Tianjin:Civil Aviation University of China, 2016.

[23]李玉铎. 催化裂化烟气轮机叶片表面催化剂沉积结垢的模拟实验与数值研究[D]. 青岛: 中国石油大学(华东), 2015.

LI Y D. Simulation experiment and numerical study on catalyst deposition and fouling on the surface of flue gas turbine blades in catalytic cracking [D]. Qingdao: China University of Petroleum (East China), 2015.

[24]陈帅甫, 王建军, 金有海, 等. 烟气轮机动叶表面颗粒冷态沉积实验[J]. 化工进展, 2018, 37(7): 2539-2546.

CHEN S F, WANG J J, JIN Y H, et al. Cold-state particle deposition experiment on the moving blades of flue gas turbines[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2539-2546.

[25]胡汉波, 李隆键, 张义华, 等. 直接空冷凝汽器三维流场特性的数值分析[J]. 动力工程, 2007(4): 592-595.

HU H B, LI L J, ZHANG Y H, et al. Numerical analysis of three-dimensional flow field characteristics in direct air-cooledcondensers[J]. Power Engineering, 2007(4): 592-595.

[26]贾宝荣, 杨立军, 杜小泽, 等. 导流装置对直接空冷单元流动传热特性的影响[J]. 中国电机工程学报, 2009, 29(8):14-19.

JIA B R, YANG L J, DU X Z, et al. Influence of flow guide devices on flow and heat transfer characteristics in direct air-cooled units[J]. Proceedings of the CSEE, 2009, 29(8): 14-19.

[27]王永增, 孟磊磊, 王润等. 齐大山铁矿露天边坡岩体力学参数确定[J]. 有色金属(矿山部分), 2021, 73(1): 98-102.

WANG Y Z, MENG L L, WANG R, et al. Determination of mechanical parameters for open-pitsloperock mass in Qidashairon mine open-pit slope[J]. Nonferrous Metals(Mining Section), 2021, 73(1): 98-102.

[28]EL-BATSHM S H. Modeling particle deposition on compressor and turbine blade surfaces[D]. Austria: Vienna University of Technology, 2001.

[29]SOLTANI M, AHMADI G. On particle adhesion and removal mechanisms in turbulent flows[J]. Journal of Adhesion Science and Technology, 1994, 8(7): 763-785.

[30]中华人民共和国工业和信息化部. 烟气轮机技术条件: HG/T 3650—2012[S]. 北京: 化工工业出版社, 2013.

Ministry of Industry and Information Technology of the People’s Republic of China. Technical specifications for flue gas turbines: HG/T 3650—2012[S]. Beijing: Chemical Industry Press, 2013.