ISSN 1008-5548

CN 37-1316/TU

最新出版

颗粒层除尘器的研究进展

Research progress on granular bed filter


蔡杰1, 朱康宁1, 沈小又1, 李源1, 刘孝培2, 曹阳3, 宋涛1, 顾中铸1

1.南京师范大学 能源与机械工程学院, 江苏 南京 210023; 2.内蒙古科技大学 能源与环境学院, 内蒙古 包头 014010;

3.国家能源集团神皖马鞍山发电有限责任公司, 安徽 马鞍山 243000


引用格式:

蔡杰, 朱康宁, 沈小又, 等. 颗粒层除尘器的研究进展[J]. 中国粉体技术, 2026, 32(3): 1-14.

Citation:CAI Jie, ZHU Kangning, SHEN Xiaoyou, et al. Research progress on granular bed filter[J]. China Powder Science and Technology, 2026, 32(3): 1-14.

DOI:10.13732/j.issn.1008-5548.2026.03.003

收稿日期: 2024-12-17, 修回日期: 2025-03-24,上线日期: 2025-08-25。

基金项目: 国家自然科学基金项目, 编号: 52276121。

第一作者简介: 蔡杰(1978—),男,教授,博士,硕士生导师,研究方向为多相流。E-mail:caijie@njnu.edu.cn。


摘要:【目的】 梳理颗粒层除尘器(granular bed filter, GBF)的研究现状,为其进一步的研究与应用发展提供参考。【研究现状】 GBF的实验研究主要针对固定床GBF和移动床GBF,研究方向主要包括开发新型GBF、优化现有GBF、分析GBF的性能(主要是除尘效率和压降)与各宏观物理量之间的关系。在GBF的数值研究中,颗粒床层模型的构建主要有2种思路,分别为颗粒球规则排列和颗粒球随机堆积;在数学模型方面,主要基于计算流体动力学-离散元法(computational fluid dynamics-discrete element method,CFD-DEM)或CFD-离散相模型(discrete phase model,DPM)的气固耦合方法。数值研究的内容主要为细颗粒物在颗粒床层中的运动沉积情况以及各参数对GBF性能的影响。此外,对移动床GBF的数值研究尚属空白。【结论与展望】未来GBF的研究方向主要包括设计新型GBF或优化现有GBF、完善GBF的数值研究模型并开展对移动床GBF的数值研究。

关键词: 颗粒层除尘器; 实验研究; 数值研究; 研究进展


Abstract

Significance Fine particles are common in industrial production, daily life, and the natural environment, posing significant hazards to industrial equipment, environmental quality, and human health. Therefore,the efficient removal of fine particles has become a key research area. However, existing technologies for dust removal technologies are generally unsuitable for environments with temperatures exceeding 500 ℃, with only a few viable options, such as ceramic filters and granular bed filters (GBFs). Ceramic filters have received limited attention due to issues like clogging and high costs, whereas GBFs have garnered significant interest due to their high filtration efficiency, resistance to high temperatures and pressures, durability against wear and corrosion, low cost, simple structure, and broad adaptability. As one of the most promising technologies for high-temperature dust removal, GBFs are now widely used in energy, chemical, metallurgical, and environmental industries, making further research in this area highly valuable.

Progress Extensive research has been conducted on GBFs,making significant advancements. Experimental studies have primarily focused on fixed-bed GBF and moving-bed GBFs, as research on fluidized-bed GBFs remains limited due to their relatively lower filtration efficiency. Key directions in experimental research include: 1) Development of new GBF types.Fluidized-bed and moving-bed GBFs are novel adaptations of fixed-bed GBFs. In addition, researchers have explored various alternatives, including dual-layer fixed-bed GBFs, triple-layer fixed-bed GBFs, and dual-layer moving-bed GBFs. 2) Optimization of existing GBFs.Moving-bed GBFs, with their complex structures compared to fixed-bed GBFs,have been a particular focus. Research has examined the design and placement of flow distribution plates, louvers, and internal components, including their shape, size, position, angle, and symmetry.Analysis of GBF performance. Studies have investigated the relationship between GBF performance, mainly dust removal efficiency and pressure drop, and various macroscopic parameters, such as granular bed thickness, granule size of the filter media, mass flow rate of filter media granules (for moving-bed GBFs), filtration velocity, filtration time, temperature, fine particle size, and the mass flow rate of fine particles at the GBF inlet. While the quantitative relationship between these parameters and GBF performance differs across studies, there is a broad consensus on the qualitative trends as documented in many literatures. 3) Numerical studies on GBF initially focused on single-granule filtration models, which only considered the motion and deposition of fine particles around a single granule in an airflow, neglecting complex interactions between granules that could affect their movement and deposition.Previous research aimed to establish a connection between single-granule filtration and granular bed filtration,establishing empirical formulas for predicting filtration efficiency.However, these formulas generally had evident errors and limited applicability. Despite these limitations, single-granule filtration models provided insights into the motion and deposition processes of fine particles, laying a solid foundation for further research of GBF. With advancements in computational technologies, granular bed filtration models have evolved.Current approaches include regular granule arrangements and discrete element method (DEM)-based random granule packing. The former simplifies calculations, while the latter better captures granule interactions and reflects real-world conditions.Mathematical modeling of dust-laden airflow through granular beds is typically addressed using gas-solid two-phase flow methods, such as computational fluid dynamics (CFD)-DEM or CFD-discrete phase model (DPM). Numerical studies on GBF primarily focus on fine particle motion and deposition in granular beds and the influence of various parameters on GBF performance. However, numerical research on moving-bed GBF is still lacking.

Conclusions and Prospects Despite significant progress, several shortcomings persist in GBF research:limited micro-level analysis and in complete and inadequate numerical modeling. With the increasing demands for energy conservation and environmental protection, the potential of GBF technology is increasingly recognized in various fields. Future research should mainly focus on the following areas: 1) Developing new GBF types or optimizing existing designs to broaden their application range and adaptability to various complex operating conditions. 2) Advancing numerical research methods to establish more comprehensive and practical models. 3) Conducting numerical studies on moving-bed GBFs to support their industrial application.

Keywords: granular bed filter; experimental research; numerical research; research progress


参考文献(References)

[1]CHENG Y, YU H M, XIE S, et al. Study on the coal dust deposition fraction and site in the upper respiratory tract under different particle sizes and labor intensities[J]. Science of the Total Environment, 2023, 868: 161617.

[2]张月帆, 陈建华, 李冬, 等. 道路扬尘控制措施及其效率评估研究进展 [J]. 环境工程技术学报, 2021, 11(5): 845-854.

ZHANG Y F,CHEN J H,LI D,et al. Research progress of road dust control measures and their efficiency evaluation[J].Journal of Environmental Engineering Technology, 2021, 11(5): 845-854.

[3]HARRISON R M, ALLAN J, CARRUTHERS D, et al. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: a review[J]. Atmospheric Environment, 2021, 262: 118592.

[4]刘学民. 环境规制下雾霾污染的协同治理及其路径优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

LIU X M. Collaborative governance of haze and its path optimization from the perspective of environmental regulatio[D].Harbin: Harbin Institute of Technology, 2020.

[5]张殿印, 顾海根, 肖春, 等. 除尘器运行维护与管理[M]. 北京: 化学工业出版社, 2015.

ZHANG D Y, GU H G, XIAO C, et al. Operation, maintenance, and management of dust collectors[M]. Beijing: ChemicalIndustry Press, 2015.

[6]TUOMI S, KURKELA E, SIMELL P, et al. Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas[J]. Fuel, 2015, 139: 220-231.

[7]朱晓华, 王珲, 张殿印. 工业除尘设备设计手册[M]. 北京: 化学工业出版社, 2023.

ZHU X H, WANG H, ZHANG D Y. Handbook of industrial dust collector equipment design[M]. Beijing: Chemical Industry Press,2023.

[8]杜建平. 黏性粉尘的颗粒床捕集及温变应力脱除[D]. 北京: 北京科技大学, 2022.

DU J P. Capture and removal of sticky dust in granular bed based on temperature changes[D]. Beijing: University of Science

and Technology Beijing, 2022.

[9]HU F X, YANG G H, DING G Z, et al. Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter[J]. Applied Energy, 2016, 170: 47-57.

[10]YU Y, TAO Y, WANG F L, et al. Filtration performance of the granular bed filter used for industrial flue gas purification: a review of simulation and experiment[J]. Separation and Purification Technology, 2020, 251(1): 117318.

[11]STANGHELLE D, SLUNGAARD T R, NJU O K S. Granular bed filtration of high temperature biomass gasification gas[J].Journal of Hazardous Materials, 2007, 144(3): 668-672.

[12]孙志辉. 新型颗粒层除尘器过滤性能的研究[D]. 镇江: 江苏大学, 2007.

SUN Z H. Kinetic research on the deposition fine particles on the randomly packed granular bed filter[D]. Zhenjiang: Jian-gsu University, 2007.

[13]颜深, 孙国刚, 孙占朋, 等. 颗粒床过滤除尘技术研究进展[J]. 化工进展, 2017, 39(9): 3152-3163.

YAN S, SUN G G, SUN Z P, et al. Advances in research on granular bed filter for dust removal[J]. Chemical Industry and Engineering Progress, 2017, 39(9): 3152-3163.

[14]XIAO G, WANG X H, ZHANG J P, et al. Granular bed filter:a promising technology for hot gas clean-up[J]. Powder Technology, 2013, 244(4): 93-99.

[15]SMITH D H, AHMADI G. Problem and progress in hot-gas filtration for pressurized fluidized bed combustor (PFBC) and integrated gasification combined cycle (IGCC)[J]. Aerosol Science and Technology, 1998, 29(3): 163-169.

[16]ZEVENHOVEN C, SCARLETT B, ANDRIES J. The filtration of PFBC combustion gas in a granular bed filter[J]. Filtration & Separation, 1992, 29(3): 239-244.

[17]杨国华, 周江华, 舒海平, 等. 双层滤料颗粒床过滤除尘新方法的研究[J]. 动力工程, 2005(6): 139-142.

YANG G H, ZHOU J H, SHU H P, et al. A new dual-layered granule bed filter for cleaning-up gas[J]. Journal of Chinese Society of Power Engineering, 2005(6): 139-142.

[18]WU H Y, WU L, XU Z G, et al. Effect of filtration velocity on filtration efficiency of dual-layer granular beds at high temperatures[J]. Environmental Engineering Science, 2021, 38(8): 811-817.

[19]陈泉霖. 基于热解煤气的高温静电除尘技术研究[D]. 杭州: 浙江大学, 2020.

CHEN Q L. Research on high temperature electrostatic precipitation based on coal pyrolysis gas[D]. Hangzhou: Zhejiang University, 2020.

[20]张世红, 陆继东, 刘德昌, 等. 新型流化床颗粒层过滤器过滤性能的研究[J]. 中国电机工程学报, 1999, 19(7): 54-57.

ZHANG S H, LU J D, LIU D C, et al. Experimental study on the filtration of a novel granular filter in fluidized-bed[J]. Proceedings of the CSEE, 1999, 19(7): 54-57.

[21]CHEN J L, ZHOU J Z, LI X F, et al. Study of the heat transfer characteristics and waste heat recovery of hot gas with coag-ulative particles flowing through a moving granular bed filter (MGBF)[J]. Applied Thermal Engineering, 2022, 211: 118444.

[22]JIANG M X, WU P, HU L K, et al. Experimental study on the size segregation of binary particles in a moving granular bed[J]. Powder Technology, 2021, 388: 82-89.

[23]PAENPONG C, INTHIDECH S, PATTIYA A. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass[J]. Bioresource Technology,2013, 139: 34-42.

[24]PAENPONG C, PATTIYA A. Filtration of fast pyrolysis char fines with a cross-flow moving-bed granular filter[J]. Powder Technology, 2013, 245: 233-240.

[25]王助良, 钟秦, 吉恒松, 等. 新型固定床颗粒层除尘器的研究[J]. 洁净煤技术, 2006, 12(2): 85-88.

WANG Z L, ZHONG Q, JI H S, et al. Investigation of a new fixed bed particle layer deduster[J]. Clean Coal Technology, 2006, 12(2): 85-88.

[26]颜学升, 王助良, 张敏, 等. 新型颗粒层的过滤性能[J]. 江苏大学学报(自然科学版), 2009, 30(5): 491-495.

YAN X S, WANG Z L, ZHANG M, et al. Filtration performance of a new granular layer[J]. Journal of Jiangsu University (Natural Science Edition), 2009, 30(5): 491-495.

[27]夏军仓, 许世森, 郜时旺, 等. 移动颗粒层过滤高温高压煤气除尘技术的试验研究[J]. 动力工程, 2003, 23(2):2337-2341.

XIA J C, XU S S, GAO S W, et al. Experimental research on moving granular bed filter for hot gas cleanup[J]. Power Engineering, 2003, 23(2): 2337-2341.

[28]LI Y J, ZHANG T C, DAI Z Y, et al. Study on the construction and filtration characteristics of a Triple-Layer granular bed filter[J]. Separation And Purification Technology 2024, 334: 125996.

[29]CHARVET A, WINGERT L, BARDIN-MONNIER N, et al. Multi-staged granular beds applied to the filtration of ultrafine particles: an optimization of collector diameters[J]. Powder Technology, 2019, 342: 341-347.

[30]YU Y S, TAO Y B, MA Z,et al. Experimental study and optimization on filtration and fluid flow performance of a granular bed filter[J]. Powder Technology, 2018, 333: 449-457.

[31]石开玉, 杨国华, 田素瑞, 等. 粉-粒双层滤料颗粒床对PM2.5的过滤特性研究[J]. 中国矿业大学学报, 2015, 44(1): 138-143.

SHI K Y, YANG G H, TIAN S R, et al. Study of filtration characteristics of PM2.5 by powder-grain dual-layer granular bed[J]. Journal of China University of Mining & Technology, 2015, 44(1): 138-143.

[32]黄三. 自带粉体层滤膜的多层滤料颗粒床过滤特性研究[D]. 宁波: 宁波大学, 2012.

HUANG S. Study on characteristics of the multi-layer granular bed with powder membrane[D]. Ningbo: Ningbo University, 2012.

[33]LIU S J, TONG L G, JIANG M X, et al. Flow stratification characteristics of binary particles in a moving granular bed[J]. Powder Technology, 2020, 374: 482-491.

[34]El-HEDOK I A, WHITMER L, BROWN R C. The influence of granular flow rate on the performance of a moving bed gran-ular filter[J]. Powder Technology, 2011, 214(1): 69-76.

[35]WAN H P, YANG T Y, CHUNG I L, et al. Hydrodynamic behavior in a moving granular bed filter for modeling on char separation during the biomass fast pyrolysis process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6): 1016-1021.

[36]SQUIRES A M. Granular-bed filtration assisted by filter-cake formation: 4.Advanced designs for panel-bed filtration and gas treating[J]. Powder Technology, 2005, 155(1): 74-84.

[37]YIN S W, KANG P, HE Y, et al. Experimental study on filtration characteristics of a novel moving granular bed filter[J].Separation and Purification Technology, 2021, 267: 118624.

[38]MA L, JING J X, ZHANG F Z,et al. Particle combination characteristics on PM2.5 granular bed filtration efficiency and pressure drop[J]. Powder Technology, 2023, 430: 118993.

[39]XI J F, GU Z Z, CAI J, et al. Filtration of dust in an electrostatically enhanced granular bed filter for high temperature gas cleanup[J]. Powder Technology, 2020, 368: 105-111.

[40]XIAO G H, YANG G H, QI Y, et al. Effect of filter layer thickness on the filtration characteristics of dual layer granular beds[J]. Powder Technology, 2018, 335: 344-353.

[41]YANG S I, CHUNG I L, WU S R. An experimental study of the influence of temperature on char separation in a moving granular bed[J]. Powder Technology, 2012, 228: 121-127.

[42]YU Y S, TAO Y B, WANG F L, et al. Parameter study and optimization on filtration and resistance characteristics of gran-ular bed filter[J]. Advanced Powder Technology, 2018, 29(12): 3250-3256.

[43]官蕾. 细颗粒物在随机堆积颗粒层中分离过滤特性的动力学研究[D]. 南京: 东南大学, 2020.

GUAN L. Kinetic research on the deposition fine particles on the randomly packed granular bed filter[D]. Nanjing: Southeast University, 2020.

[44]PAYATAKES A C, TIEN C, TURIAN R M. A new model for granular porous media: part I. model formulation[J]. AIChEJournal, 1973, 19(1): 58-67.

[45]FAN L T, NASSAR R, HWANG S H, et al. Analysis of deep bed filtration data: modeling as a birth‐death process[J]. Aiche Journal, 1985, 31(11): 1781-1790.

[46]WANG F L, HE Y L, TANG S Z, et al. Particle filtration characteristics of typical packing granular filters used in hot gas clean-up[J]. Fuel, 2018, 234: 9-19.

[47]DING H S, LIANG S, TONG L G, et al. Numerical simulation of a multilayer granular bed filter: effect of bed structure on the filtration characteristics of high-temperature particulate matter[J]. Powder Technology, 2023, 426: 118632.

[48]DING H S, YANG Y X, TONG L G, et al. Enhancing submicron dust capture in high-temperature flue gases: a computational study on gradient pore-buried tube granular bed filters[J]. Powder Technology, 2024, 445: 120086.

[49]DING H S, MA Q W, TONG L G, et al. Filtration characteristics of a binary multi-layer granular bed filter based on CFD-DEM coupling simulation[J].Particuology, 2023, 78: 73-85.

[50]FUKUDA M, SUZUKI J, KAWAI H, et al. Numerical analysis on passage and blockage behaviors of fine particles through an orifice consists of coarse particles[J]. ISIJ International, 2015, 55(6): 1291-1298.

[51]LUO Z G, ZHOU H, ZHANG T, et al. DEM study of blockage behaviour of cohesive fine particles in a packed structure of large particles[J].Powder Technology, 2017, 314: 102-109.

[52]陈俊霖. 含尘高温烟气颗粒床内除尘及换热特性研究[D]. 北京: 中国科学院大学, 2019.

CHEN J L. Study on the collection efficiency and heat transfer characteristics of hot dusty gas flowing through the packed granular bed[D]. Beijing: University of Chinese Academy of Sciences, 2019.

[53]WANG F L, TANG S Z, HE Y L, et al. Parameter study of filtration characteristics of granular filters for hot gas clean-up[J].Powder Technology, 2019, 353: 267-275.

[54]GUAN L, YUAN Z L,GU Z Z, et al. Numerical simulation of ash particle deposition characteristics on the granular surface of a randomly packed granular filter[J].Powder Technology, 2017, 314: 78-88.

[55]WANG F L, HE Y L, TANG S Z, et al. Multi-objective optimization of a dual-layer granular filter for hot gas clean-up by using genetic algorithm[J].Applied Energy, 2019, 248: 463-474.

[56]LIU S J, QIU N, DING H S, et al. Numerical study on filtration characteristics of high-temperature particulate matter in a three-dimensional randomly arranged multi-granularity particle bed filter[J]. Powder Technology, 2024, 432: 119162.

[57]ZHU K N, CAI J, LI Y, et al. Numerical study on the filtration characteristics of fine particles in granular bed filter at high temperature[J].Particuology, 2024, 93: 41-53.

[58]CHEN J L, LI X F, HUAI X L, et al. Collection efficiency in a three-dimensional randomly arranged dual-layer granular bed filter[J].Particuology, 2020, 49: 88-94.

[59]REMOND S. DEM simulation of small particles clogging in the packing of large beads[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(21): 4485-4496.

[60]KIKUCHI S, KON T, UEDA S, et al.Analysis of powder motion in a packed bed of blast furnace using the discrete element method[J].ISIJ International, 2015, 55(6): 1313-1320.

[61]XIAO T, WANG Q H, SHEN Y Y, et al. Three-dimensional CFD-DEM simulation of solid-liquid filtration in granular bed[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2020, 46(2): 164-172.

[62]XIE Z Z, WANG S, SHEN Y S. CFD-DEM modelling of the migration of fines in suspension flow through a solid packed bed[J]. Chemical Engineering Science, 2021, 231: 116261.

[63]NATSUI S, UEDA S, NOGAMI H, et al. Gas⁃solid flow simulation of fines clogging a packed bed using DEM-CFD[J]. Chemical Engineering Science, 2012, 71: 274-282.

[64]朱康宁, 李源, 沈小又, 等. 外加电场作用下颗粒层除尘器过滤性能的数值研究[J]. 中国粉体技术, 2024, 30(3): 88-99.

ZHU K N, LI Y, SHEN X Y, et al.Numerical study on filtration performance of granular bed filter under applied electric field[J].China Powder Science and Technology, 2024, 30(3): 88-99.

[65]XIA T, FENG Q, WANG S, et al. A numerical study of particle migration in porous media during produced water reinjection[J]. Journal of Energy Resources Technology, 2022, 144(7): 29-31.

[66]FO B, XU R F, XI J F, et al.Numerical simulation of fine particle liquid-solid flow in porous media based on LBM-IBM-DEM[J].Canadian Journal of Chemical Engineering, 2023, 101(6): 3576-3591.

[67]ZHOU Y G, FO B, XU R F,et al. Numerical study of the movement of single fine particles in porous media based on LBM-DEM[J]. Sustainability, 2024, 16(17): 7346.