ISSN 1008-5548

CN 37-1316/TU

最新出版

基于EDEM钢渣颗粒堆积角的颗粒接触参数标定

Calibration of particle contact parameters based on steel slag particle stacking angle using EDEM


李明月a, 钱付平b, 马 骁b, 李逸非a, 印心如a, 郑志敏b

安徽工业大学 a. 建筑工程学院, b. 能源与环境学院, 安徽 马鞍山 243032

引用格式:

李明月, 钱付平, 马骁, 等. 基于EDEM钢渣颗粒堆积角的颗粒接触参数标定[J]. 中国粉体技术, 2026, 32(3): 1-10. 

LI Mingyue, QIAN Fuping, MA Xiao, et al. Calibration of particle contact parameters based on steel slag particle stacking angle using EDEM[J]. China Powder Science and Technology, 2026, 32(3): 1−10.

DOI:10.13732/j.issn.1008-5548.2026.03.017

收稿日期: 2025-03-26, 修回日期: 2025-06-10, 上线日期: 2025-07-21。

基金项目: 国家自然科学基金项目,编号:52176148;安徽省重点研究与开发计划项目,编号202104i07020016。

第一作者简介: 李明月(1999—),女,硕士生,研究方向为工业通风与空气净化。E-mail:18956973307@163. com。

通信作者简介: 钱付平(1974—),男,教授,博士生导师,入选“安徽省优秀青年人才支持计划”,安徽省战略性新兴产业技术领军人才。 研究方向为通风除尘系统及设备优化研究。E-mail:fpingqian@ahut. edu. cn。

摘要:【 目的】 为了使基于离散元单元法(discrete element method,DEM)的仿真软件 EDEM 的数值模拟结果能够更准确 地反映炼钢过程中钢渣颗粒的流动特性,分析钢渣颗粒接触参数的最优组合,为钢渣颗粒的离散元仿真提供可靠参数依 据。【方法】 采用实验与仿真结合的方法,通过实验测得钢渣颗粒的粒径分布、密度、颗粒形状、堆积角度等基本参数,并 设计正交试验对颗粒−颗粒接触参数进行参数标定;利用 Python软件的 OpenCV 库实现堆积角图像的读取处理。【结果】 经正交试验确定的颗粒−颗粒最优接触参数组合为:滚动摩擦系数为0. 1,静摩擦系数为0. 35,恢复系数为0. 1;实际钢渣 颗粒堆积角为26. 39°,仿真最优参数组合的堆积角为25. 92°,二者相对误差为1. 78%;其中,恢复系数对堆积角的影响最 为显著,滚动摩擦系数次之,静摩擦系数影响最小。【结论】 表明此参数标定方法是可行的,获取的参数可用于钢渣的离 散元仿真。

关键词: 钢渣颗粒; 堆积角; 图像处理; 接触参数标定; 正交试验; 数值模拟

Abstract 

Objective In steel production technology, accurately simulating the behaviour of steel slag particles under specific operating con⁃ ditions remains a significant challenge. To address this issue, this study establishes reliable simulation parameters for steel slag particles, providing a robust parameter basis for constructing discrete element method (DEM) simulation models using EDEM software. Through systematic calibration of key contact parameters, such as the collision restitution coefficient, rolling friction coefficient, and static friction coefficient, a complete set of parameter values is derived to approximate the real-world behaviour of steel slag particles. In addition, the results offer a theoretical reference for DEM simulations of steel slag particle transport in pipelines, where flow characteristics are affected by factors including pipeline geometry, flow velocity, and particle-wall interactions. By using the optimal parameter combination,this work enhances the modeling accuracy for these complex interactions and improves the prediction capability for steel slag particle behaviour in pipelines.

Methods A combination of experimental and simulation methods was used to determine the basic parameters of steel slag particles, such as particle size distribution, density, particle shape, and stacking angle. To accurately calibrate the particleparticle contact parameters in discrete element simulations, an orthogonal experimental design method was used. The parameter levels for collision restitution coefficient, rolling friction coefficient, and static friction coefficient were selected based on the existing literature and pretest results to ensure scientific rigor. To minimize experimental errors and enhance result reliability, an empty column was set up for analyzing the random errors during the experimental process. Through rigorous planning of test combinations, multiple sets of comparative tests were carried out to systematically investigate the influence of each parameter on steel slag particle behavior. For precise measurement of the stacking angle, the Open CV library in Python was used for image processing steps, including grayscale conversion, binarization, and edge contour extraction. This methodology ultimately yielded an optimal parameter combination among the coefficients.

Results and Discussion Through rigorous orthogonal experimental design and several rounds of simulation validation, the optimal particle-particle contact parameters were determined as follows: rolling friction coefficient of 0.1, static friction coefficient of 0. 35, and collision restitution coefficient of 0.1. Experimental results showed that the measured natural stacking angle of steel slag particles was 26. 39°, and the discrete element simulation using the optimal parameter combination yielded a stacking angle of 25. 92°. The relative error between the two was only 1. 78%, validating the parameter combination and the reliability of the simulation model. Through an in-depth analysis of the experimental data, it was found that among the parameters affecting the stacking angle of steel slag particles, the collision restitution coefficient had the most prominent influence. It significantly affected postcollision particle trajectories, thereby substantially impacting the stacking behavior. The rolling friction coefficient was the second most important factor, and the static friction coefficient had a relatively minimal influence but played a role in particle stabilization during the particle accumulation stage.

Conclusion To obtain the contact parameters for steel slag particle simulations, a combination of experimental and simulation methods was used, and the Generic EDEM Material Model (GEMM) database was employed to establish a range of contact parameters. During the stacking angle measurement stage, the Open CV library in Python was utilized for image reading and processing, enabling precise extraction of the outer contour line of the pile. A systematic analysis was conducted to determine the effect of different contact parameters on stacking behavior. Polar analysis and analysis of variance( ANOVA) revealed that with a rolling friction coefficient of 0. 1, static friction coefficient of 0. 35, and coefficient of restitution of 0. 1, the simulated stacking angle was 25. 92°, demonstrating exceptional agreement with the experimentally measured stacking angle, with a mere relative error of 1. 78%. These results confirm the validity of this parameter combination as the optimal configuration for steel slag particle simulation in DEM software.

Keywords: steel slag particle; stacking angle; image processing; contact parameter calibration; orthogonal test; numerical simulation

参考文献(References)

[1]REZAEI-HOSSEINABADI M J, BAYAT M, NADI B, et al. Sustainable utilisation of steel slag as granular column for ground improvement in geotechnical projects[J]. Case Studies in Construction Materials, 2022,17: e01333.

[2]HUSSAIN A, HUSSAINI S K K. Use of steel slag as railway ballast: a review[J]. Transportation Geotechnics, 2022,35:100779.

[3]LIU W H, LI H, ZHU H M, et al. Properties of a steel slag-permeable asphalt mixture and the reaction of the steel slagasphalt interface[J]. Materials, 2019, 12(21): 3603.

[4]LI D D, WANG R Y, ZHU Y P, et al. Calibration of simulation parameters for fresh tea leaves based on the discrete element method[J]. Agriculture, 2024, 14(1): 148.

[5]梅潇, 吴苇荣, 刘祥伟. 颗粒缩放理论标定未筛选烟煤离散元仿真参数[J]. 中国粉体技术, 2024, 30(2): 67-81.

MEI X, WU W R, LIU X W. Discrete elemental simulation parameters of unscreened bituminous coal calibrated by particle scaling theory[J]. China Powder Science and Technology, 2024, 30(2): 67-81.

[6]LEI J L, REN D N, LIU Z C, et al. Discrete element contact parameters measurement and calibration of sugarcane leaves based on RSM-PSO[J]. BioResources, 2023, 18(3): 4994-5012.

[7]刘佳, 连峰, 刘治, 等. 影响砂砾土堆积角形成的离散元关键参数[J]. 中国粉体技术, 2025, 31(1): 98-109.

LIU J, LIAN F, LIU Z, et al. Key discrete element parameters influencing angle of repose formation of gravel soi[l J]. China Powder Science and Technology, 2025, 31(1): 98-109.

[8]WANG Y D, LING C, LIU X N, et al. Research on coal rock parameter calibration based on discrete element method[J]. Scientific Reports, 2024, 14(1): 26507.[9]HU Y, XIANG W, DUAN Y P, et al. Calibration of ramie stalk contact parameters based on the discrete element method[J]. Agriculture, 2023, 13(5): 1070.

[10]蔡文源, 王利强, 徐立敏. 基于静态和动态休止角的超细碳酸钙离散元参数标定[J]. 中国粉体技术, 2024, 30(4):81-93.

CAI W Y, WANG L Q, XU L M. Discrete elemental parameter calibration of ultrafine calcium carbonate based on static and dynamic angle of repose[J]. China Powder Science and Technology, 2024, 30(4): 81-93.

[11]BAI S H, YUAN Y W, NIU K, et al. Simulation parameter calibration and experimental study of a discrete element model of cotton precision seed metering[J]. Agriculture, 2022, 12(6): 870.

[12]MARTIGNONI A, IORIO L, STRANO M. Determination of discrete element method (DEM) simulation parameters for polymeric waste particles[J]. Granular Matter, 2024, 26(4): 1-14.

[13]李永祥, 李飞翔, 徐雪萌, 等. 基于颗粒缩放的小麦粉离散元参数标定[J]. 农业工程学报, 2019, 35(16): 320-327.

LI Y Y, LI F X, XU X M, et al. Discrete meta-parameter calibration of wheat flour based on particle scaling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 320-327.

[14]FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems-I: exact scaling laws[J]. Computational Particle Mechanics, 2014, 1: 159-168.

[15]韩伟, 王绍宗, 张倩, 等. 基于JKR接触模型的微米级颗粒离散元参数标定[J]. 中国粉体技术, 2021, 27(6): 60-69.

HAN W, WANG S Z, ZHANG Q, et al. Discrete element parameter calibration of micron-sized powder particles based on JKR contact mode[l J]. China Powder Science and Technology, 2021, 27(6): 60-69.

[16]MICHELE M, HUGH S E. Discrete element method( DEM) for industrial applications: comments on calibration and validation for the modelling of cylindrical pellets[J]. KONA Powder and Particle Journal, 2015, 32: 236-252.

[17]ASAF Z, RUBINSTEIN D, SHMULEVICHI. Determination of discrete element model parameters required for soil tillage[J]. Soil and Tillage Research, 2007, 92(1/2): 227-242.

[18]CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.

[19]ZHOU Y C, WRIGHTB D, YANG R Y, et al. Rolling friction in the dynamic simulation of sandpile formation[J]. Physica A: Statistical Mechanics and its Applications, 1999, 269(2/3/4): 536-553.

[20]HERTZ H. Ueber die berührung fester elastischer körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882,92: 156-171.

[21]MINDLINR D. Compliance of an elastic bodies in contac[t J]. Journal of Applied Mechanics, 1949, 16(3): 259-268.

[22]MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18(1): 31-38.

[23]高宁, 李林萍, 赵霖青, 等. 基于离散元法的透水钢渣沥青混合料接触模型细观参数标定[J]. 上海公路, 2023(1):114-118.

GAO N, LI L P, ZHAO L Q, et al. Calibration of fine-scparameters of contact model for permeable steel slag asphalt mixtures based on the discrete element method[J]. Shanghai Highways, 2023(1): 114-118.

[24]刘鹏环. 基于公路路基的钢渣黄土混合料配合比设计及水稳性研究[D]. 兰州: 兰州交通大学, 2022.

LIU P H. Design of mix ratio and water stability of steel slag loess mix based on highway foundation[D]. Lanzhou:Lanzhou Jiaotong University, 2022.