孙建辰a, 孙国刚b
中国石油大学(北京) a. 化学工程与环境学院; b. 机械与储运工程学院, 北京 102249
孙建辰, 孙国刚. 自动补气提升低处理气量下的旋风分离器效率[J]. 中国粉体技术, 2026, 32(1): 1-9.
SUN Jianchen, SUN Guogang. Efficiency enhancement of cyclone separators under low process gas volume by automatic gas
replenishmen[t J]. China Powder Science and Technology, 2026, 32(1): 1−9.
DOI:10.13732/j.issn.1008-5548.2026.01.007
收稿日期:2025-02-11,修回日期:2025-04-15,上线日期:2025-07-11。
基金项目:国家自然科学基金项目,编号21978322。
第一作者简介:孙建辰(1999—),男,博士研究生, 研究方向为气固分离与流态化。E-mail:sunsjc1@163. com。
通信作者简介:孙国刚(1961—), 男, 教授, 博士生导师, 研究方向为气固分离与流态化。E-mail:ggsunbj@163. com。
摘要:【目的】 探讨旋风分离器因生产负荷的大波动及装置开、停阶段处理气量大幅降低,以及分离效率显著下降问题
的解决方案。【方法】 基于旋风分离器效率、压降与处理气量之间的关系,提出如下方案:按生产的最大负荷气量设计旋
风分离器,并在生产中根据旋风分离器的波动压降在旋风分离器进气口处自动补气,使旋风分离器始终维持在最大效率
点附近工作;采用实验室模拟试验检验该方案的可行性和有效性。【结果】 当处理气量低于设计值时(实验中气量低至30%的设计气量,体积分数,下同), 通过进口自动补气可使旋风分离器的分离效率始终维持在最高效率,且系统结构简
单、易于实现。【结论】 该自动补气方案能有效解决旋风分离器在气量下降时分离效率降低的问题,保障旋风分离器的节
能减排效果,能够显著提升旋风分离器的自动控制及智能化操作水平。
关键词:旋风分离器; 分离效率; 自动补气; 智能化
Objective To solve the problems of significant efficiency reductions and significant drops in gas processing capacity that occur in
cyclone separators during large production fluctuations and unit start-up and shutdown stages, which leads to an increase in particulate emissions and deterioration of product quality.
Methods The maximum load( upper operating limit) of the unit or the maximum gas flow rate of the cyclone separator was determined, which served as the basis for separator design. Then, real-time monitoring of the pressure differences between the inlet
and outlet of the separator was conducted using pressure sensors. Utilizing this data, automatic adjustments of the inlet valve or
bypass pipeline were triggered to compensate for reductions in process gas volume. Finally, a laboratory simulation system was
established to verify the feasibility and effectiveness of the proposed scheme.
Results and Discussion Two gas replenishment schemes were designed: direct fresh gas replenishment and recycled separator
exhaust gas replenishment. An automatic control module was established to regulate gas replenishment. During laboratory simulations, a cyclone separator with a diameter of 300 mm was used. The test results showed that, without gas replenishment, the
separation efficiency-gas volume rate curve presented an arch shape, peaking at 94. 7% (measured with talc powder with an
average particle size of 12 um) at a gas flow rate of approximately 1 000 m3/h, and the corresponding pressure drop reached
2 100 Pa. The separation efficiency varied greatly with changes in inlet gas volume rate, indicating strong sensitivity to gas volume fluctuations. During gradual decreases in the process gas volume rate from 1 000 m3/h to 300 m3/h, the proposed system
automatically replenished gas to maintain the target pressure drop of 2 100 Pa, and the separation efficiency remained stable at
94. 7%. Under replenishment conditions, the relationship curve between separation efficiency and gas volume (gas velocity) transitioned to a nearly horizontal straight line.
Conclusion The automatic gas replenishment at the separator inlet effectively mitigates efficiency loss when the process gas
volume decreases, ensuring consistent operation and maintaining maximum efficiency. 2) By coupling a negative feedback control module driven by real-time pressure drop signals, the automatic control and intelligentization of the cyclone separator are
enhanced. 3) The proposed scheme is simple and effective, achieving both energy savings and emission reductions.
Keywords:cyclone separator; separation efficiency; automatic air replenishment; intelligentization
[1]孙国刚. 化学工程手册: 气固分离[M]. 3版. 北京: 化学工业出版社, 2019.
SUN G G, Chemical engineering handbook:gas-solid separation[M]. Beijing: Chemical Industry Press,2019.
[2]BAYAREH M. A review of the experimental analysis of gas-solid cyclone separators[J]. Chem Bio Eng Reviews, 2024, 11(6): e202400036.
[3]高助威, 凌浩然, 邹馨, 等. 循环流化床锅炉下排气旋风分离器的研究进展[J]. 中国粉体技术, 2023, 29(3): 35-46.
GAO Z W, LING H R, ZOU X, et. al. Research progress of cyclone separator with downward exhaust gas in circulating fluidized bed boile[r J]. China Powder Science and Technology, 2023, 29(3):35-46.
[4]彭丽, 柳冠青, 董方, 等. 基于CFD-DPM的旋风分离器结构设计优化[J]. 中国粉体技术, 2021, 27(2): 63-73.
PENG L, LIU G Q, DONG F, et al. Structure optimization and design of cyclone separator based on CFD-DPM[J]. China
Powder Science and Technology, 2021, 27(3): 63-73.
[5]孔行健, 孙国刚, 刘长征, 等. 芯管半切旋风分离器的实验研究[J]. 中国粉体技术, 2004,10(增刊): 96-99.
KONG X J, SUN G G, LIU C Z, et al. Experimental study on semi-cut cyclone separator with core tube[ J]. China Powder
Science and Technology, 2004, 10(Supp): 96-99.
[6]YUAN S W, SUN G G, CAO G, et al. Study of the performance and flow field of a new spiral-roof cyclone separator[J].
Powder Technology, 2024, 438: 119605.
[7]潘传九, 靳兆文, 冯秀. 旋风分离器的螺旋导流和防返混[J]. 化工进展, 2012, 31(6): 1215-1219.
PAN C J, JIN Z W, FENG X. Spiral flow guidance and anti-mixing of cyclone separators[J]. Chemical Industry and Engineering Progress, 2012, 31(6): 1215-1219.
[8]OBERMAIR S, WOISETSCHLÄGER J, STAUDINGER G. Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry[J]. Powder Technology, 2003, 138(2): 239-251.
[9]王佳音, 徐国, 赵泽华, 等. 稳涡器提升旋风分离器性能的流场分析[J]. 中国粉体技术, 2021, 27(4): 104-112.
WANG J Y, XU G, ZHAO Z H, et al. Flow field analysis of cyclone separator performance improved by vortex stabilizer[J].
China Powder Science and Technology, 2021, 27(4): 104-112.
[10]WASILEWSKI M. Analysis of the effect of counter-cone location on cyclone separator efficiency[J]. Separation and Purification Technology, 2017, 179: 236-247.
[11]吴小林, 王红菊, 时铭显. 防返混锥对旋风分离器旋进涡核的抑制作用[J]. 石油大学学报(自然科学版), 2001(3): 71-73.
WU X L, WANG H J, SHI M X. The inhibiting effect of anti-mixing cone on the swirling vortex core of cyclone separators[J]. Journal of Petroleum University( Natural Science Edition), 2001(3): 71-73.
[12]HAN S X, YANG J X, ZHANG R H, et al. Forming and breaking the ceiling of inlet gas velocity regarding to separation
efficiency of cyclone[J]. Particuology, 2023, 79: 85-94.
[13]赵洋, 陈建义, 曹鸣谦, 等 . 入口面积可变式旋风分离器的性能[J]. 石油学报(石油加工), 2021, 37(5): 1031-
1039.
ZHAO Y, CHEN J Y, CAO M Q, et al. Performance of the cyclone separators with variable inlet area[J]. Acta Petrolei
Sinica( Petroleum Processing Section), 2021, 37(5): 1031-1039.
[14]BORHANI JEBELI M, MORIDI P, BEHESHTI M H, et al. A new cyclone design with adjustable inlet angle and external
geometry for optimal PM10 removal[J]. International Journal of Environmental Science and Technology, 2020, 17(2): 1075-1086.
[15]张振千, 王松江, 孔令胜, 等 . 一种排气管出口面积可调节的旋风分离器及其调节方法: CN202111349195. 7[ P].
2024-05-17.
ZHANG Z Q, WANG S J, KONG L S, et al. A cyclone separator with adjustable exhaust pipe outlet area and its adjust⁃
ment method: CN202111349195. 7[ P]. 2024-05-17.
[16]韩鲁, 王成成. 一种自调节式旋风分离器: CN201721819403. 4[ P]. 2018-09-21.
HAN L, WANG C C. A self-adjusting cyclone separator: CN201721819403. 4[ P]. 2018-09-21.
[17]唐敦兵, 杨俊, 张思, 等. 过滤效果可自动调整的旋风分离器及方法: CN201611077274. 6[ P]. 2017-05-31.
TANG D B, YANG J, ZHANG S, et al. Cyclone separator with automatically adjustable filtration effect and method: CN201611077274. 6[ P]. 2017-05-31.
[18]KALEN B, ZENZ F A. Theoretical-empirical approach to saltation velocity in cyclone design[J]. American Institute of
Chemical Engineers. 1974, 70(137):388-396.
[19]时铭显, 吴小林. 旋风分离器的大型冷模试验研究[J]. 化工机械, 1993, 20(4): 187-192.
SHI M X,WU X L. Large-scale cold model test study of cyclone separators[J]. Chemical Equipment,1993,20(4):187-192.
[20]YANG J X, SUN G G, ZHAN M S. Prediction of the maximum-efficiency inlet velocity in cyclones[J]. Powder Technology, 2015, 286: 124-131.
[21]WEI Q, SUN G G, YANG J X. A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator[J]. Chemical Engineering Science, 2019, 204: 287-297.
[22]孙建辰. 一种低处理气量时保持高效率的旋风分离器系统: CN201920980830. 3[ P]. 2020-07-07.
SUN J C. A cyclone separator system maintaining high efficiency at low gas throughput:CN201920980830. 3[P]. 2020-
07-07.
[23]孙建辰. 一种低处理气量时保持高效率的旋风分离器系统和方法: CN201910566002. X[ P]. 2019-09-10.
SUN J C. A cyclone separator system and method for maintaining high efficiency at low gas throughput: CN201910566002.
X[P]. 2019-09-10.