ISSN 1008-5548

CN 37-1316/TU

最新出版

固态电解质与粉体电极界面的基础问题及优化策略

Fundamental issues and optimization strategies of solid-state electrolyte-powder electrode interface


张海涛1 ,吴阳晨2

1. 西南交通大学 智慧城市与交通学院,四川 成都 611756;2. 西南交通大学 电气工程学院,四川 成都 611756


引用格式:

张海涛,吴阳晨. 固态电解质与粉体电极界面的基础问题及优化策略[J]. 中国粉体技术,2025,31(5):1-17.

ZHANG Haitao, WU Yangchen. Fundamental issues and optimization strategies of solid-state electrolyte-powder electrode interface[J]. China Powder Science and Technology,2025,31(5):1−17.

DOI:10.13732/j.issn.1008-5548.2025.05.003

收稿日期:2024-11-13,修回日期:2025-06-06,上线日期:2025-06-28。

基金项目:国家自然科学基金项目,编号:52477224,51977185;四川省自然科学基金项目,编号:2023NSFSC0441。

第一作者简介:张海涛(1985),男,特聘研究员,博士,博士生导师,四川省学术和技术带头人后备人选,研究方向为电化学储能。E-mail:haitaozhang@swjtu. edu. cn。


摘要:【目的】 为了解决固态电解质与粉体电极界面兼容性问题,综述固态电解质与粉体电极界面的基础问题及优化策略,为固态电池的进一步研究与发展提供参考。【研究现状】 概述固态电解质与电极界面的基础理论并分析界面弱连接、界面稳定性以及界面离子传导受阻等界面问题;详细介绍相场模拟技术、有限元仿真技术和第一性原理计算等电极材料与电解质界面性能优化模拟技术;探讨电极材料与电解质界面问题的改性策略,包括界面接触的增强和界面稳定性的提升,剖析电场内电荷行为对界面稳定性的影响。【结论与展望】提出当前固态电池在发展进程中面临着诸多严峻挑战,认为界面性能优化策略对解决固态电解质与粉体电极界面的基础问题至关重要,实施这些策略有望突破固态电池的发展瓶颈。

关键词:固态电解质;粉体电极;界面问题;优化策略;模拟技术

Abstract

Significance The dual-carbon goals have spurred a significant shift in the industry, accelerating transformation and imposing higher requirements on lithium battery technologies. Driven by innovations in downstream applications, the demand for lithium batteries with higher energy density and enhanced safety has increased. Traditional liquid batteries utilizing flammable organic electrolytes are susceptible to thermal runaway, which may trigger chain reactions leading to battery pack failure and increased fire risks. Consequently, solid-state battery technology has emerged as an innovative solution, garnering growing research attention. By replacing flammable liquid electrolytes with solid-state alternatives, these batteries inherently mitigate the risks of fire and explosion while significantly improving safety performance. Moreover, solid-state batteries effectively suppress dendrite formation, thereby substantially enhancing energy density, stability, and reliability. Despite significant progress in developing highly conductive solid-state electrolytes, most all-solid-state batteries still suffer from constrained rate performance, primarily attributed to the interfacial impedance at the solid-state electrolyte-electrode interface. However, the precise mechanisms governing this impedance remain experimentally elusive. Optimizing the solid electrolyte-powder electrode interface continues to be one of the pivotal challenges in propelling its commercialization.

Progress In recent years, significant breakthroughs have been made in solid-state electrolyte-electrode interface research, with the focus evolving from basic theoretical exploration to addressing key scientific challenges. Based on fundamental principles,three interface types were investigated theoretically. The inherent causes for poor interfacial contact, stability issues, and impeded ionic conduction were analyzed. Moreover, the intrinsic connection between interfacial contact resistance, electrochemical stability, and ionic transport kinetics was systematically elucidated, thereby laying a solid foundation for interfacial optimization. Methodologically, advanced simulation techniques have emerged as powerful tools for investigating interfacial phenomena and predicting material behaviors. Phase-field simulations were used to model both interfacial layer formation and electrolyte microstructure evolution. Finite element analysis was used to quantitatively characterize the interface thermal behavior and stress distribution. This combined approach provides multidimensional insights into the anisotropic characteristics of lithium dendrite growth. In addition, finite element simulation was used to model battery aging processes during solid-state battery development. First-principles calculations haven proven particularly valuable for studying interfacial charge transfer mechanisms and reaction kinetics, while density functional theory (DFT) provided an efficient approach to predicting the electrode-electrolyte interfacial reactions. Nevertheless, limitations persist in accurately simulating dynamic contact behaviors at complex powder/porous-electrolyte interfaces. To address these interfacial challenges, several innovative strategies were proposed. The introduction of transition interlayers reduced interface resistance and enhanced cycle stability by increasing interfacial contact. Structural optimization strategies, particularly through sandwich configurations and three-dimensional architectures, have emerged as a promising research direction for enhancing interfacial contact. Furthermore, interfacial engineering through buffer layer design and stabilizer incorporation enhanced electrolyte-electrode interface contact, thereby improving solid-state battery performance. Additionally, a comprehensive understanding of charge behaviors under electric fields is considered crucial for achieving stable interfaces.

Conclusions and Prospects Despite the progress achieved in solid-state lithium battery technology, several critical challenges must be overcome to realize its widespread adoption in energy storage systems. These challenges are intricate and multifaceted, with interfacial phenomena representing a particularly complex aspect that requires comprehensive consideration during design and optimization. Both chemical-electrochemical and physical factors must be taken into account, with special emphasis on understanding the physical interface through detailed analysis and refinement of cell internal architecture. Although simulation techniques provide theoretical support for interface optimization, their practical implementation still faces significant limitations. In addition, the development of advanced characterization techniques is essential for clarifying the correlations between electrochemical performance degradation and the electrode-electrolyte interface. These techniques can shed light on the microscopic changes at the interface and thus provide a scientific basis for improving the interfacial performance.

Keywords:solid-state electrolyte; powder electrode; interfacial issues; optimization strategy; simulation technique


参考文献(References)

[1]CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14:58-74.

[2]魏超超,余创,吴仲楷,等. Li3PS4固态电解质的研究进展[J]. 储能科学与技术,2022,11(5):1368-1382.WEI C C, YU C, WU Z K, et al. Research progress of Li3PS4 solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(5):1368-1382.

[3]LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653):50-53.

[4]LI F, CHENG X B, LU G X, et al. Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes[J]. Journal of the American Chemical Society, 2023, 145(50):27774-27787.

[5]TAKADA K, OHTA N, ZHANG L Q, et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics,2012,225:594-597.

[6]RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1):266-273.

[7]OH P, LEE H, PARK S, et al. Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years[J]. Advanced Energy Materials, 2020, 10(24):2000904.

[8]LEE D, LEE H, SONG T, et al. Toward high rate performance solid-state batteries[J]. Advanced Energy Materials, 2022, 12(27):2200948.

[9]PANG Y P, PAN J Y, YANG J H, et al. Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review[J]. Electrochemical Energy Reviews, 2021, 4(2):169-193.

[10]WANG H, AN H W, SHAN H M, et al. Research progress on interfaces of all-solid-state batteries[J]. Acta Physico Chimica Sinica, 2021, 37(11):2007070.

[11]HUANG Y L, SHAO B W, HAN F D. Interfacial challenges in all-solid-state lithium batteries[J]. Current Opinion in Electrochemistry, 2022, 33:100933.

[12]ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9):3253-3266.

[13]XI L, ZHANG D C, XU X J, et al. Interface engineering of all-solid-state batteries based on inorganic solid electrolytes[J]. ChemSusChem, 2023, 16(9): e202202158.

[14]YADAV N G, FOLASTRE N, BOLMONT M, et al. Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteries via in situ SEM[J]. Journal of Materials Chemistry A, 2022, 10(33):17142-17155.

[15]HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14):4248-4255.

[16]YAO K, SCHELD W S, MA Q L, et al. Holistic view on cation interdiffusion during processing and operation of garnet all-solid-state batteries[J]. Energy Storage Materials, 2024, 71:103662.

[17]SAKUDA A, HAYASHI A, TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials, 2010, 22(3):949-956.

[18]SUN Z T, LIU M Y, ZHU Y, et al. Issues concerning interfaces with inorganic solid electrolytes in all-solid-state lithium metal batteries[J]. Sustainability, 2022, 14(15):9090.

[19]KOERVER R, ZHANG W B, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8):2142-2158.

[20]SAKUDA A, HAYASHI A, TATSUMISAGO M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3:2261.

[21]MCGROGAN F P, SWAMY T, BISHOP S R, et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte[J]. Advanced Energy Materials, 2017, 7(12):1602011.

[22]XIANG L, LI X T, XIAO J, et al. Interface issues and challenges for NASICON-based solid-state sodium-metal batteries[J]. Advanced Powder Materials,2024,3(3):100181.

[23]JIANG Y D, LAI A J, MA J, et al. Fundamentals of the cathode-electrolyte interface in all-solid-state lithium batteries[J]. ChemSusChem, 2023, 16(9):e202202156.

[24]GAO B, JALEM R, MA Y M,et al. Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme[J]. Chemistry of Materials, 2020, 32(1):85-96.

[25]NAIK K G, VISHNUGOPI B S, MUKHERJEE P P. Heterogeneities affect solid-state battery cathode dynamics[J]. Energy Storage Materials, 2023, 55:312-321.

[26]ZHAI P F, AHMAD N, QU S Q, et al. A lithiophilic-lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries[J]. Advanced Functional Materials,2024, 34(27):2316561.

[27]KUBE A, BIENEN F B, WAGNER N, et al. Wetting behavior of aprotic Li-air battery electrolytes[J]. Advanced Materials Interfaces, 2022, 9(4):2101569.

[28]KIM K, SIEGEL D J. Predicting wettability and the electrochemical window of lithium-metal/solid electrolyte interfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(43):39940-39950.

[29]JEON D H. Wettability in electrodes and its impact on the performance of lithium-ion batteries[J]. Energy Storage Materials, 2019, 18:139-147.

[30]YAN C, XU R, XIAO Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries[J]. Advanced Functional Materials, 2020, 30(23):1909887.

[31]LIU Y Y, XU X Y, JIAO X X, et al. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte[J]. Advanced Materials, 2023, 35(24):2301152.

[32]YU Y, BASKIN A, VALERO-VIDAL C, et al. Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack[J]. Chemistry of Materials, 2017, 29(19):8504-8512.

[33]ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42):23685-23693.

[34]WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10):1026-1031.

[35]JUN K, SUN Y Z, XIAO Y H, et al. Lithium superionic conductors with corner-sharing frameworks[J]. Nature Materials, 2022, 21(8):924-931.

[36]MARTIN B, KLIEM H. Internal fields in solid electrolytes due to interface effects[J]. Applied Physics Letters, 2009, 95(3):032901.

[37]富忠恒,陈翔,姚楠,等. 固态电解质锂离子输运机制研究进展[J]. 高等学校化学学报,2023,44(5):11-23.

FU Z H, CHEN X, YAO N, et al. Research advances in transport mechanism of lithium ions in solid electrolytes[J]. Chemical Journal of Chinese Universities, 2023, 44(5):11-23.

[38]BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1):140-162.

[39]SHIRAKI S, SHIRASAWA T, SUZUKI T, et al. Atomically well-ordered structure at solid electrolyte and electrode interface reduces the interfacial resistance[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41732-41737.

[40]HICKSON D T, IM J, HALAT D M, et al. Low-temperature characterization of a nonaqueous liquid electrolyte for lithium batteries[J]. Journal of the Electrochemical Society, 2024, 171(3):030514.

[41]SUN Y L, LIU B, LIU L Y, et al. Ions transport in electrochemical energy storage devices at low temperatures[J]. Advanced Functional Materials,2022,32(15):2109568.

[42]李想,刘德重,袁开,等 . 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术,2024,13(7):2327-2347.

LI X, LIU D Z, YUAN K, et al. Solid-state electrolyte for low-temperature lithium metal batteries[J]. Energy Storage Science and Technology, 2024, 13(7):2327-2347.

[43]王宇豪,李志勇,郭新 . 聚合物基电解质在低温固态锂电池中的应用与挑战[J]. 储能科学与技术,2024,13(7):2243-2258.

WANG Y H, LI Z Y, GUO X. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(7):2243-2258.

[44]梁嘉宁,许晓伟,曾诚,等. 固态电解质Li3PS4 晶相结构转变[J]. 科学通报,2022,67(11):1190-1200.

LIANG J N, XU X W, ZENG C, et al. Structure transitions of lithium ionic conductor Li3PS4[J]. Chinese Science Bulletin, 2022, 67(11):1190-1200.

[45]朱承飞,薛金花. 烧结温度对陶瓷体氧化铝固体电解质性能的影响[J]. 硅酸盐学报,2014,42(7):886-890.

ZHU C F, XUE J H. Influence of sintering temperature on performance of aluminum oxide solid electrolytes[J]. Journal of the Chinese Ceramic Society, 2014, 42(7):886-890.

[46]ZHAO X X, CAI J Q, JIANG D W, et al. Pressure-induced ionic-polaronic-ionic transition in LaAlO3[J]. Applied Physics Letters, 2023, 122(26):262101.

[47]王月,邵渤淮,陈双龙,等. 高压下TiO2 纳米线晶粒和晶界性质及电输运行为[J]. 物理学报,2022,71(9):232-239.

WANG Y, SHAO B H, CHEN S L, et al. Grain and grain boundary behaviors and electrical transport properties of TiO2 nanowires under high pressure[J]. Acta Physica Sinica, 2022, 71(9):232-239.

[48]王月,邵渤淮,陈双龙,等 . 高压下缺陷对锐钛矿相 TiO2 多晶电输运性能的影响:交流阻抗测量[J]. 物理学报,2023,72(12):229-238.

WANG Y, SHAO B H, CHEN S L, et al. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement[J]. Acta Physica Sinica, 2023, 72(12):229-238.

[49]OHASHI A, KODAMA M, YASUDA T, et al. Influence of stress distribution on the ionic conductivity of a sulfide all-solid-state lithium-ion battery[J]. ECS Meeting Abstracts, 2020, MA2020-01(2):271.

[50]SUN Z T, ZHOU J Y, WU Y F, et al. Mapping and modeling physicochemical fields in solid-state batteries[J]. The Journal of Physical Chemistry Letters, 2022, 13(46):10816-10822.

[51]SUN Z T, BO S H. Understanding electro-mechanical-thermal coupling in solid-state lithium metal batteries via phase-field modeling[J]. Journal of Materials Research, 2022, 37(19):3130-3145.

[52]DENG J, WAGNER G J, MULLER R P. A phase field model of solid electrolyte interface formation in lithium-ion batteries[J]. MRS Online Proceedings Library, 2012, 1440(1):1-6.

[53]MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26:100921.

[54]REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23):12195-12204.

[55]TAKADA K, OHNO T. Experimental and computational approaches to interfacial resistance in solid-state batteries[J]. Frontiers in Energy Research, 2016, 4:10.

[56]NORTHROP P W C, PATHAK M, RIFE D, et al. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A940-A951.

[57]XIE Y Z, WANG S H, WANG Z P, et al. A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries[J]. Chinese Physics B, 2024, 33(5):058203.

[58]DU S L, JIA M, CHENG Y, et al. Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations[J]. International Journal of Thermal Sciences, 2015, 89:327-336.

[59]LEPLEY N D, HOLZWARTH N A W. Modeling interfaces between solids: application to Li battery material[J]. Physical Review B, 2015, 92(21):214201.

[60]FIEDLER L, SHAH K, BUSSMANN M, et al. Deep dive into machine learning density functional theory for materials science and chemistry[J]. Physical Review Materials, 2022, 6(4):040301.

[61]GEERLINGS P, DE PROFT F, LANGENAEKER W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103(5):1793-1873.

[62]POPLE J A, GILL P M W, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chemical Physics Letters, 1992, 199(6):557-560.

[63]ULLRICH C, KOHN W. Kohn-Sham theory for ground-state ensembles[J]. Physical Review Letters, 2001, 87(9): 093001.

[64]RANSOM B, RAMDAS A, LOMELI E, et al. Electrolyte coatings for high adhesion interfaces in solid-state batteries from first principles[J]. ACS Applied Materials & Interfaces, 2023, 15(37):44394-44403.

[65]LANGELLA A, MASSARO A, MUÑOZ-GARCÍA A B, et al. First-principles insights on solid-state phase transitions in P2-NaxMnO2-based high energy cathode during Na-ion battery operations[J]. Chemistry of Materials, 2024, 36(5):2370-2379.

[66]WANG L F, REN N Q, YAO Y, et al. Designing solid electrolyte interfaces towards homogeneous Na deposition: theoretical guidelines for electrolyte additives and superior high-rate cycling stability[J]. Angewandte Chemie International Edition, 2023, 62(6): e202214372.

[67]ZHANG C H, JIN T, LIU J D, et al. In situ formed gradient composite solid electrolyte interphase layer for stable lithium metal anodes[J]. Small, 2023, 19(38):2301523.

[68]ZHANG L C, YANG J F, JING K, et al. Thickness-dependent beneficial effect of the zno layer on tailoring the Li/Li7La3Zr2O12 interface[J]. ACS Applied Materials & Interfaces, 2020, 12(12):13836-13841.

[69]曹文卓,李泉,王胜彬,等. 金属锂在固态电池中的沉积机理、策略及表征[J]. 物理学报,2020,69(22):113-126.

CAO W Z, LI Q, WANG S B, et al. Mechanism, strategies, and characterizations of Li plating in solid state batteries[J]. Acta Physica Sinica, 2020, 69(22):113-126.

[70]HAO X G, ZHAO Q, SU S M, et al. Constructing multifunctional interphase between Li1. 4Al0. 4Ti1.6( PO43 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(34):1901604.

[71]LI B, SU Q M, YU L T, et al. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries [J]. Journal of Membrane Science, 2021, 618:118734

[72]CHEN Z H, HAN B C, SHI Y S, et al. High energy density hybrid solid-state Li-ion batteries enabled by a gel/ceramic/gel sandwich electrolyte[J]. ACS Applied Energy Materials, 2020, 3(6):5113-5119.

[73]SHAN Y H, LI L B, CHEN X C, et al. Gentle haulers of lithium-ion-nanomolybdenum carbide fillers in solid polymer electrolyte[J]. ACS Energy Letters, 2022, 7(7):2289-2296.

[74]ZHANG Y H, WU L R, MA J, et al. Nanotechnology in solid state batteries, what’s next?[J]. Next Nanotechnology,2023,2:100011.

[75]CHEN F, LUO J, JING M X, et al. A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(7):070513.

[76]YUE H Y, LI J X, WANG Q X, et al. Sandwich-like poly (propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1):268-274.

[77]BAI H R, ZHU K, WANG Z, et al. 2d fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture[J]. Advanced Functional Materials, 2021, 31(41):2102646.

[78]CLAUSNITZER M, DANNER T, PRIFLING B, et al. Influence of electrode structuring techniques on the performance of all-solid-state batteries[J]. Batteries & Supercaps, 2024, 7(4): e202300522.

[79]LIU J, ZHU H Z, SHIRAZ M H A. Toward 3D solid-state batteries via atomic layer deposition approach[J]. Frontiers in Energy Research, 2018, 6:10.

[80]BAGGETTO L, NIESSEN R A H, ROOZEBOOM F, et al. High energy density all-solid-state batteries: a challenging concept towards 3D integration[J]. Advanced Functional Materials, 2008, 18(7):1057-1066.

[81]NOTTEN P H L, ROOZEBOOM F, NIESSEN R A H, et al. 3-D integrated all-solid-state rechargeable batteries[J]. Advanced Materials, 2007, 19(24):4564-4567.

[82]PEARSE A J, SCHMITT T E, FULLER E J, et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte[J]. Chemistry of Materials, 2017, 29(8):3740-3753.

[83]LI W Z, BAO Z M, DU Q, et al. Open-source CFD elucidating mechanism of 3D pillar electrode in improving all-solid-state battery performance[J]. Advanced Science, 2022, 9(13):2105454.

[84]ASHBY D S, CHOI C S, EDWARDS M A, et al. High-performance solid-state lithium-ion battery with mixed 2D and 3D electrodes[J]. ACS Applied Energy Materials, 2020, 3(9):8402-8409.

[85]DUAN J, HUANG L Q, WANG T R, et al. Shaping the contact between Li metal anode and solid-state electrolytes[J]. Advanced Functional Materials, 2020, 30(15):1908701.

[86]LU Z H, YANG Z W, LI C, et al. Modulating nanoinhomogeneity at electrode-solid electrolyte interfaces for dendrite-proof solid-state batteries and long-life memristors[J]. Advanced Energy Materials, 2021, 11(16):2003811.

[87]HU P, ZHANG Y, CHI X W, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials & Interfaces, 2019, 11(10):9672-9678.

[88]LUO L S, SUN Z F, GAO H W, et al. Insights into the enhanced interfacial stability enabled by electronic conductor layers in solid-state Li batteries[J]. Advanced Energy Materials, 2023, 13(10):2203517.

[89]WAN H L, ZHANG B, LIU S F, et al. Interface design for high-performance all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(19):2303046.

[90]SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6):1212-1218.

[91]CHI S S, LIU Y C, ZHAO N, et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17:309-316.

[92]KIM H, IM C, RYU S, et al. Interface modeling via tailored energy band alignment: toward electrochemically stabilized all-solid-state Li-metal batteries[J]. Advanced Functional Materials, 2022, 32(9):2107555

[93]STADLER R, JACOBSEN K W. Fermi level alignment in molecular nanojunctions and its relation to charge transfer[J]. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(16):161405.

[94]GOES W, WIMMER Y, EL-SAYED A M, et al. Identification of oxide defects in semiconductor devices: a systematic approach linking DFT to rate equations and experimental evidence[J]. Microelectronics Reliability, 2018, 87:286-320.