郭航瑞1, 周星1, 周威1, 刘耀华1, 赵燕1,2
1.国防科技大学 空天科学学院, 湖南 长沙 413200; 2.内蒙动力机械研究所, 内蒙古 呼和浩特 010010
引用格式:
郭航瑞, 周星, 周威, 等. 改性ZIF-67对高氯酸铵热分解的催化性能[J]. 中国粉体技术, 2026, 32(1): 1-9.
GUO Hangrui, ZHOU Xing, ZHOU Wei, et al. Catalytic performance of modified ZIF-67 in thermal decomposition of ammonium perchlorate[J]. China Powder Science and Technology, 2026, 32(1): 1-9.
DOI:10.13732/j.issn.1008-5548.2026.01.016
收稿日期: 2025-06-09, 修回日期: 2025-06-12, 上线日期: 2025-06-26。
基金项目: 国防基础性JG科研院所稳定支持项目,编号:WDZC20230202;国防科技大学自主创新科学基金项目,编号:23-ZZCX-ZZGC-01-10。
第一作者简介: 郭航瑞(2001—),男,硕士生,研究方向为特种能源技术。E-mail:2243977558@qq.com。
通信作者简介: 周星(1981—),男,副教授,博士,硕士生导师,研究方向为特种能源技术。E-mail:xingzhou_nudt@nudt.edu.cn。
摘要: 【目的】 采用二茂铁甲酸(ferrocene carboxylic acid, FcA)改性咪唑酸锌骨架-67 (zinc imidazolate framework, ZIF-67),部分替换ZIF-67中低活性的有机配体2-甲基咪唑,利用钴、铁双金属协同效应,探究ZIF-67对高氯酸铵(ammonium perchlorate,AP)热分解催化特性影响。 【方法】 基于对高燃速推进剂的需求,采用搅拌法和超声法制备不同Fe含量的改性ZIF-67(ZIF-67@25%FcA、ZIF-67@50%FcA、ZIF-67@100%FcA),以提高固体推进剂的燃速;通过扫描电子显微镜、X射线衍射仪、傅立叶红外光谱对改性ZIF-67的微观形貌、晶体结构进行表征;采用差示扫描量热仪研究改性ZIF-67对AP的热分解性能的影响,使用激光点火装置测试改性ZIF-67对AP基固体推进剂燃速的影响。 【结果】 改性ZIF-67颗粒粒径约为2 μm,呈正十二面体结构;ZIF-67@100%FcA具有最佳的催化性能,可使AP高温分解峰温降至312 ℃,表观分解热提高约1.5倍,在压强为7 MPa的氩气气氛中AP基固体推进剂燃速提升13.3%。 【结论】 FcA的引入使改性ZIF-67的燃速调控性能得到有效提高,在不明显影响固体推进剂机械感度的情况下有效提升其燃速。
关键词: 燃速; 咪唑酸锌骨架; 固体推进剂; 催化性能
Abstract
Objective Enhancing the thermal decomposition of ultrafine ammonium perchlorate (AP) is a primary method to increase the burning rate of solid propellants. Current catalytic approaches typically employ transition metals, transition metal oxides, ferrocene, and ferrocene derivatives, yet these conventional catalysts present significant limitations. The addition of transition metals and oxides may compromise processing performance, and the incorporation of ferrocene derivatives into ultrafine AP exhibits high mechanical sensitivity, posing safety risks during propellant manufacturing. These challenges have driven the need for safer, more efficient combustion catalysts with reduced sensitivity. In recent years, metal-organic framework (MOF)-based catalysts have shown significant progress. By combining different metal centers with organic ligands, it offers precise control over material characteristics, showing great application potential. Moreover, bimetallic cobalt-iron (Co-Fe) MOFs have attracted wide attention for their superior catalytic activity and stability compared to single metal MOFs, achieved through Co-Fe synergistic effects. In this study, to improve the burning rate of solid propellants, the zeolitic imidazolate framework-67 (ZIF-67) is modified by introducing ferrocene carboxylic acid (FcA) as an Fe-containing organic ligand, partially replacing the low-activity organic ligand 2-methylimidazole. Through the Co-Fe bimetallic synergy, this study investigates the catalytic effects of ZIF-67 on AP thermal decomposition, providing foundational data and support for developing high-performance solid propellants with optimized burning rates.
Methods To address the demand for high-burning-rate propellants, FcA-modified ZIF-67 with varying Fe contents (ZIF-67@25%FcA, ZIF-67@50%FcA, and ZIF-67@100%FcA) was synthesized through stirring and ultrasonication. The microstructure and crystal structure of the modified ZIF-67 were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The catalytic effects on AP thermal decomposition were investigated via thermogravimetry analysis-differential scanning calorimetry (TGA-DSC), while the impact on the burning rate of AP-based solid propellants was assessed using a laser ignition setup.
Results and Discussion The modified ZIF-67 particles exhibited a uniform dodecahedral morphology with a particle size of approximately 2 μm. Among all the modified products, ZIF-67@100%FcA demonstrated superior catalytic performance. It reduced the high-temperature decomposition peak temperature of AP to 312 ℃, increased the apparent decomposition heat by about 1.5 times, and enhanced the burning rate of AP-based solid propellants by 13.3% at 7 MPa in an argon atmosphere.
Conclusion The introduction of FcA significantly enhances the catalytic performance of ZIF-67 without notably impacting the mechanical sensitivity of solid propellants. Compared to the baseline formulation, the incorporation of ZIF-67 resulted in a 4.8% increase in burning rate, while ZIF-67@100%FcA achieved a more substantial 13.3% enhancement, demonstrating the effectiveness of this modification. Previous studies have shown that MOFs exhibit better catalytic performance when metal oxides form in situ during heating compared to direct addition. As a Co-based MOF with self-assembled 2-methylimidazole as the organic ligand, ZIF-67 benefits from the unique advantages of MOF materials, including unique microporous structures, high chemical tunability, and excellent catalytic properties, which are particularly effective for promoting AP decomposition.
Keywords: burning rate; zinc imidazolate framework; solid propellant; catalytic performance
参考文献(References)
[1]NGUYEN S, ANH H T, WU Y, et al. Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts[J]. Journal of Materials Chemistry A, 2020, 8(30): 15066-15073.
[2]LIPANOV A M, KOLESNIKOVA L N, LESHCHEV A Y. On the effectiveness of using the real law of solid propellant burning rate as a function of solid rocket motor pressure[J]. Combustion, Explosion, and Shock Waves, 2020, 56(2): 172-180.
[3]YADAV N, SRIVASTAVA N K, VARMA M. Recent advances in catalytic combustion of AP-based composite solid propellants[J]. Defence Technology, 2021, 17(3): 1013-1031.
[4]YONG K, PENG L, LEI X, et al. The positive correlation between the dispersion and catalytic performance of Fe2O3 nanoparticles in nano-Fe2O3-ultrafine AP energetic composites supported by solid UV-vis spectroscopy[J]. Dalton Transactions, 2023, 52(36): 12796-12807.
[5]MALIK M O, LI W, HAO J Y, et al. Advancements in ferrocene-based burning rate catalysts: preparations, properties, catalytic and anti-migration mechanism[J]. Journal of Organometallic Chemistry, 2025, 1028: 123524.
[6]CHEN H F, BAO Y Y, WANG J C, et al. Microflower-like Fe-Co-MOF with enhanced catalytic performance for decomposition of ammonium perchlorate and combustion of ammonium perchlorate-based composite propellants[J]. Case Studies in Thermal Engineering, 2024, 56: 104281.
[7]DING A, HE Y P, CHEN F F, et al. Antibacterial activity of M-MOF nanomaterials (M=Fe, Co, Ni, Cu, and Zn): impact of metal centers[J]. ACS Applied Nano Materials, 2024, 7(21): 24571-24580.
[8]雷红兵, 李铎, 李强, 等. 纳米催化材料与超细高氯酸铵的均匀复合及对复合改性双基推进剂的增速降感研究[J]. 火炸药学报, 2023, 46(12): 1100-1106.
LEI H B, LI D, LI Q, et al. The uniform combination of nano-catalytic materials with ultrafine ammonium perchlorate for ehancing the burning rate and reducing the sensitivity of composite modified double-base propellant[J]. Chinese Journal of Explosives & Propellants, 2023, 46(12): 1100-1106.
[9]王爽, 杨利, 佟文超, 等. 金属有机骨架材料在含能领域中的应用研究[J]. 火工品, 2022(6): 1-8.
WANG S, YANG L, DONG W C, et al. Research on the application of metal-organic framework materials in the field of energy[J]. Initiators & Pyrotechnics, 2022(6): 1-8.
[10]WEI S, ZHANG Y, TAN H, et al. In situ MOF-74-pyrolysis-generated porous carbon supporting spinel Cu0.15Co2.85O4/C boosts ammonium perchlorate accelerating decomposition: precise Cu doping modulating oxygen vacancy concentration[J].Small, 2024, 20(38): e2400712.
[11]AMIRI M, BEZAATPOUR A, GHIASI M, et al. Functional role of metal center and doping on tuning the electrocatalytic oxygen evolution activity of bioMIL-1: experimental and theoretical approaches[J]. ACS Applied Energy Materials, 2023,6(17): 8749-8758.
[12]PARK K S, NI Z, ADRIEN P C, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191.
[13]汪翠萍. 茂铁基修饰金属有机框架衍生的电催化剂制备及其氧还原性能研究[D]. 淮南: 安徽理工大学, 2024.
WANG C P, Preparation of electrocatalysts derived from ferrocene-based modified metal-organic frameworks and their oxygen reduction properties [D]. Huainan: Anhui University of Science and Technology, 2024.
[14]高卓, 杨婷婷, 田忠贞. 铁钴MOF的制备及电解水析氧性能研究[J]. 山东化工, 2023,52(7): 1-4.
GAO Z, YANG T T, TIAN Z Z. Preparation of Fe and/or Co MOF and their electrocatalytic performance on oxygen evolution reaction[J]. Shandong Chemical Industry, 2023,52(7): 1-4.
[15]YANG H H, QIAN X R, ZHANG N, et al. Alliance of atomic-scale/nanoscale Fe/Co active sites with hierarchically porous N-doped carbon frameworks for efficient electrocatalytic oxygen reduction[J]. Rare Metals, 2023, 42(11): 3766-3779.
[16]FENG H T, LIU X J, LI Y, et al. Novel powder catalysts of ferrocene-based metal-organic framework and their catalytic performance for thermal decomposition of ammonium perchlorate[J]. Powder Technology, 2022, 397: 117035.
[17]MI Z Y, LU C H, WANG J, et al. Encapsulation of ferrocenes in microporous ZIF-67 channels for boosting their anti-migration tendency and catalytic activity in ammonium perchlorate thermal decomposition[J]. Applied Surface Science, 2024, 658: 159872.
[18]王爽. MOFs基复合粒子的构筑及其对AP热分解催化研究[D]. 太原: 中北大学, 2020.
WANG S. Study on the construction of MOFs-based composites and their thermal decomposition catalysis of AP[D]. Taiyuan: North University of China, 2020.
[19]GUPTA NIKITA, MURTHY Z V P. Synthesis and application of ZIF-67 on the performance of polysulfone blend membranes[J]. Materials Today Chemistry, 2022, 23: 100685.
[20]李海涛, 徐爽, 宋柳芳, 等. 纳米ZnO立方体催化AP热分解及其在HTPE推进剂中的应用[J]. 火炸药学报, 2021, 44(1): 89-95.
LI H T, XU S, SONG L F, et al. Nano ZnO cube catalyzed AP thermal decomposition and its application in HTPE propellants[J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 89-95.