ISSN 1008-5548

CN 37-1316/TU

最新出版

大功率高性能钙钛矿型压电陶瓷的研究进展

Research progress on high⁃power and high⁃performance perovskite⁃type piezoelectric ceramics


郇宇1, 张晓芳2, 韩同鑫1

1.济南大学 材料科学与工程学院,山东 济南250022;2.山东女子学院 人工智能学院,山东 济南250300


引用格式:

郇宇, 张晓芳, 韩同鑫. 大功率高性能钙钛矿型压电陶瓷的研究进展[J]. 中国粉体技术, 2025, 31(6): 1-22.

HUAN Yu, ZHANG Xiaofang, HAN Tongxin. Research progress on high-power and high-performance perovskite-type piezoelectric ceramics[J]. China Powder Science and Technology, 2025, 31(6): 1-22.

DOI:10.13732/j.issn.1008-5548.2025.06.006

收稿日期: 2024-12-23, 修回日期: 2025-03-17, 上线日期: 2025-06-17。

基金项目: 国家自然科学基金项目,编号:52072150;山东省自然科学基金项目,编号:ZR2024QE104,山东省泰山学者项目,编号:tsqn202312214;校级专题项目,编号:2024RCYJ34。

第一作者简介: 郇宇(1990—),女,教授,博士,泰山学者,研究方向为压电铁电介电陶瓷与器件。 E-mail: mse_huany@ujn.edu.cn。


摘要:【目的】 梳理大功率高性能压电陶瓷性能研究,为推动大功率压电设备的发展提供有效借鉴。【研究现状】 综述近年来国内外钙钛矿型压电陶瓷的研究进展,概括锆钛酸铅(lead zirconate titanate,PZT)基、钪酸铋-钛酸铅(bismuth scandiate-lead titanate,BS-PT)基、铁酸铋-钛酸钡(bismuth ferrite-barium titanate,BF-BT)基压电陶瓷和铌酸钾钠(potassium sodium niobate,KNN)基体系中的研究,总结元素掺杂、组分设计和制备工艺对不同体系压电陶瓷性能的影响规律。【结论与展望】提出大功率高性能压电陶瓷的开发和设计思路,认为组分设计和工艺优化是设计高功率压电陶瓷的重要途径之一。

关键词: 大功率压电器件;机电耦合性能;钙钛矿;压电陶瓷

Abstract

Significance High-power piezoelectric devices, operating under harsh conditions such as high voltage and large currents, have attracted significant scientific and technological interest in recent years. The main component of high-power devices is piezoelectric ceramics. However, these ceramics face significant challenges during operation. For instance, domain switching under alternating electric fields generates intense mechanical vibrations, which can lead to cracks in piezoelectric ceramics due to their low tensile strength. Additionally, significant thermal dissipation occurs due to electrical and mechanical losses, leading to a temperature rise in the components. This combination of mechanical stress and thermal effects severely degrades the electrical performance and service life of piezoelectric devices. To address these challenges, developing piezoelectric ceramics with a high electromechanical coupling coefficient, a large piezoelectric coefficient, a high quality factor, an elevated Curie temperature, and low dielectric loss is essential for the practical application and advancement of high-power piezoelectric devices.

Progress The electromechanical coupling coefficient, piezoelectric coefficient, quality factor, Curie temperature, thermal stability, dielectric constant, and dielectric loss are key performance parameters for high-power piezoelectric ceramics. In this paper, the effects of element doping, component design, and preparation technology on the electrical properties of piezoelectric ceramics are systematically analyzed. Element doping plays a crucial role in optimizing piezoelectric performance. Donor doping, for example, improves the electromechanical coupling coefficient, piezoelectric coefficient, and dielectric constant. However, it also increases dielectric loss and significantly reduces the quality factor. In contrast, acceptor doping has the opposite effect, reducing dielectric loss and improving the quality factor but often at the expense of other electrical properties. To address these trade-offs, co-doping with both donors and acceptors has emerged as a promising strategy in recent years to achieve a more balanced improvement in overall electrical properties. Advancements in preparation technology have further expanded the potential of high-power piezoelectric ceramics. Advanced fabrication techniques, such as sintering aids, optimization of sintering atmospheres, texturing processes, and refined sintering methods, have significantly enhanced the properties of piezoelectric ceramics. In this study, lead-based (including PbZrTiO3-based and BiScO3-PbTiO3-based) and lead-free (including BiFeO3-BaTiO3-based and (K, Na)NbO3-based) piezoelectric ceramic systems for high-power piezoelectric devices are reviewed. The latest studies on element doping, component design, and preparation techniques for these systems are systematically summarized, providing insights into their development for high-power piezoelectric devices.

Conclusions and Prospects With the extensive application of high-power devices such as ultrasonic transducers, piezoelectric transformers, ceramic filters, and piezoelectric ultrasonic motors in military and high-tech fields, high-power and high-perform-ance piezoelectric ceramics have shown significant commercial market potential. At the same time, higher demands are being placed on the quality factor (Qm value), loss characteristics, and properties of piezoelectric ceramics. High-power piezoelectric ceramics face two major challenges. First, there is often a trade-off relationship between the mechanical quality factor (Qm), piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and Curie temperature (TC), making it difficult to enhance them simultaneously. Second, the temperature stability of piezoelectric properties in practical applications requires urgent improvement. To address these challenges, researchers have focused on two primary strategies: regulating phase structures through doping and employing advanced fabrication techniques, such as texturing. These approaches are effective in enhancing their overall performance and play a crucial role in developing high-power lead-free piezoelectric ceramics. It is concluded that composition design and process optimization are critical elements for designing high-power piezoelectric ceramics.

Keywords: high⁃power piezoelectric devices;electromechanical performance;perovskite;piezoelectric ceramic


参考文献(References)

[1]CHEN L, LIU H, QI H, et al. High-electromechanical performance for high-power piezoelectric applications: fundamental,progress, and perspective[J]. Progress in Materials Science, 2022, 127: 100944.

[2]LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377.

[3]ZHANG X F, LIN X J, YANG C H, et al. Effects of radial stress on piezoelectric ceramic tubes and transducers[J]. The Journal of the Acoustical Society of America, 2022, 151(1): 434.

[4]DONG G S, LI Q, ZHAO Y T, et al. Large-strain bismuth titanate sodium-based piezoelectric ceramics with enhanced temperature stability[J]. Journal of Alloys and Compounds, 2024, 1003: 175554.

[5]YANG T Y, ZHU Y F, LI S Y, et al. Dielectric loss and thermal effect in high power piezoelectric systems[J]. Sensors and Actuators A: Physical, 2020, 303: 111724.

[6]ZHANG X F, LIN X J, GUO R, et al. Influence and mechanism of radial prestress on the electro-acoustic performance of spherical transducers[J]. Sensors and Actuators A: Physical, 2023, 360: 114538.

[7]YAO Y, PAN Y, LIU S Q. Study on heat pipe heat dissipation of high-power ultrasonic transducer[J]. Ultrasonics, 2022, 120: 106654.

[8]邓俊涛, 褚涛, 钟敏, 等. 低强场损耗PZT基压电陶瓷的制备及性能研究[J]. 功能材料与器件学报, 2024, 30(4): 213-218.

DENG J T, CHU T, ZHONG M, et al. Preparation and properties of PZT-based ceramics with low dielectric loss at high electric field[J]. Journal of Functional Materials and Devices, 2024, 30(4): 213-218.

[9]ZENG S R, ZOU J Z, SONG M, et al. The mechanism for the enhanced piezoelectricity, dielectric property and thermal stability in (K, Na)NbO3 ceramics[J]. Acta Materialia, 2025, 287: 120801.

[10]LIU H, ZHUANG W F, CHEN N, et al. Ultrahigh temperature stability in heterovalent-ion doped PZT ceramics[J]. Journal of Alloys and Compounds, 2025, 1010: 177686.

[11]DURSUN S, MENSUR-ALKOY E, UNVER M U, et al. Enhancement of electrical properties in the ternary PMN-PT-PZ through compositional variation, crystallographic texture, and quenching[J]. Journal of the American Ceramic Society, 2020, 103(4): 2499-2508.

[12]陈桂生. 超声换能器设计[M]. 北京: 海洋出版社, 1984.

CHEN G S. Ultrasonic transducer design[M]. Beijing: Ocean Press, 1984.

[13]LI K, CONG S, BIAN L, et al. Simultaneous enhancement of piezoelectricity and temperature stability in Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics via Sm-modification[J]. Journal of Advanced Ceramics, 2024, 13(10): 1578-1589.

[14]张沛霖, 张仲渊. 压电测量[M]. 北京: 国防工业出版社, 1983: 1-30.

ZHANG P L, ZHANG Z Y. Piezoelectric measurement[M]. Beijing: National Defense Industry Press, 1983: 1-30.

[15]YANG Y, ZHAO J T, LI Y, et al. Defect engineering in barium titanate ferroelectric ceramic showing simultaneous enhancement of piezoelectric coefficient and mechanical quality factor[J]. Journal of the European Ceramic Society, 2024,44(2): 891-897.

[16]GUO Q H, LI F, XIA F Q, et al. High-performance Sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-based piezoceramics[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43359-43367.

[17]LIU X, ZHANG Y L, TANG M Y, et al. Stoichiometric and non-stoichiometric Mn modification on high-power properties in PYN-PZT piezoelectric ceramics[J]. Journal of Materials Science & Technology, 2025, 216: 312-320.

[18]WANG C, NING L, LI Y, et al. MnCO3 modified PMN-PZT piezoelectric ceramics with enhancing mechanical quality factor and low loss[J]. Ceramics International, 2024, 50(7): 10835-10842.

[19]LEE D G, GO S H, YOO I R, et al. Mn-doped 0.15Pb(Yb1/2Nb1/2)O3-0.48Pb(Mg1/3Nb2/3)O3-0.37PbTiO3 piezoelectric ceramics for high performance high-power transducers[J]. Ceramics International, 2023, 49(21): 33480-33488.

[20]TANG W B, WANG C H, WANG Y Q, et al. Enhanced and reliable high-power performance of PMN-PZT-based piezoelectric ceramics[J]. Ceramics International, 2024, 50(10): 17106-17115.

[21]QIAO Y, WANG L L, ZHANG D Y, et al. Effects of heterovalent ions doping-induced oxygen octahedral distortion and defect chemical change on piezoelectric characteristics and thermal stability of PHT-PIN ceramics[J]. Chemical Engineering Journal, 2024, 485: 150145.

[22]FAN G F, ZENG Z Q, JIN S L, et al. High field dielectric property and piezoelectric response in PMS-PZT piezoelectric ceramics modified with BiFeO3[J]. Ferroelectrics, 2017, 520(1): 126-134.

[23]WU Q C, HAO M M, ZENG Z Q, et al. Nonlinear dielectric effect of Fe2O3-doped PMS-PZT piezoelectric ceramics for high-power applications[J]. Ceramics International, 2017, 43(14): 10866-10872.

[24]LIN J Y, CUI B H, CHENG J R, et al. Achieving both large transduction coefficient and high Curie temperature of Bi and Fe Co-doped PZT piezoelectric ceramics[J]. Ceramics International, 2023, 49(1): 474-479.

[25]WANG C, NING L, LI Q, et al. Sm2O3 and MnO2 codoped PMN-PZT ceramics with both high mechanical quality factor and piezoelectric properties[J]. Ceramics International, 2023, 49(13): 21155-21160.

[26]YANG Y X, SUN E W, XU Z M, et al. Sm and Mn co-doped PMN-PT piezoelectric ceramics: defect engineering strategy to achieve large d33 and high Qm[J]. Journal of Materials Science & Technology, 2023, 137: 143-151.

[27]FEI X, LIN X J, WANG C, et al. Sb2O3-modified lead zirconate titanate piezoelectric ceramics with enhancing piezoelectricity and low loss[J]. Journal of the American Ceramic Society, 2023, 106(1): 501-512.

[28]SHROUT T R, ZHANG S J. Lead-free piezoelectric ceramics: alternatives for PZT?[J]. Journal of Electroceramics, 2007, 19(1): 113-126.

[29]ISHII K, TASHIRO S. Relationship between nonlinear piezoelectricity and decrease of mechanical quality factor in Pb(Mn1/3Sb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics driven at high power[J]. Japanese Journal of Applied Physics, 2010, 49(9S): 09MD01.

[30]WANG C, NING L, ZHAO W J, et al. Quaternary piezoelectric ceramics with ultra-high mechanical quality factor[J]. Materials Research Bulletin, 2024, 180: 112995.

[31]LIU Y Y, SHI X, YANG W W, et al. A high-power piezoelectric ceramic with great electrical properties and temperature stability[J]. Journal of Alloys and Compounds, 2024, 1007: 176362.

[32]MA Y H, ZHAO M, ZHANG D Y, et al. Enhanced piezoelectricity in Pb(Zr0.48Ti0.52)O3-Pb(Mn1/3Sb2/3)O3-Pb(Mg1/3Ta2/3)O3 ceramics through the synergistic effect of defect engineering and lattice distortion[J]. Journal of Alloys and Compounds, 2023, 967: 171779.

[33]QIAO P X, YANG Y, WANG Y P, et al. Enhancing the piezoelectric properties and thermal stability of PMN-PMS-PSZT high-power piezoelectric ceramics through defect engineering[J]. Journal of the European Ceramic Society, 2024, 44(12):6935-6947.

[34]QIAO P X, YANG Y, WANG Y P, et al. Enhancing the piezoelectric performance of novel PZT-PMS-PSN piezoelectric ceramics by fine-tuning the monoclinic phase[J]. Ceramics International, 2024, 50(23): 49426-49436.

[35]LIU X, REN X D, TANG M Y, et al. Superior temperature stability of electromechanical properties and resonant frequency in PYN-PZT piezoelectric ceramics[J]. Journal of the European Ceramic Society, 2024, 44(2): 873-881.

[36]YING H K, DING G Y, ZHAO J, et al. Properties of PSN-PZT piezoelectric ceramic powder prepared by fast solid-phase reaction method[J]. Materials Today Communications, 2023, 35: 106086.

[37]HONG S C, KIM S Y, YEO D H, et al. Effect of LiBiO2 on low-temperature sintering of PZT-PZNN ceramics[J]. Journal of the Korean Ceramic Society, 2022, 59(5): 638-646.

[38]HE S, JIANG G C, WANG Q, et al. Effect of SiO2-Li2O3-CuO additive on piezoelectric properties of PMS-PZT ceramics at low sintering temperature[J]. Journal of Alloys and Compounds, 2024, 1005: 176079.

[39]ZHANG J, GUO Y X, LIU Q B, et al. Low-temperature co-fired PZNN-PZT multilayer piezoelectric ceramics with excellent electrical and bending properties[J]. Journal of Science: Advanced Materials and Devices, 2023, 8(4): 100640.

[40]WATSON B H, BROVA M J, FANTON M A, et al. Densification and properties of oxygen sintered CuO-doped PIN-PMN-PT ceramics[J]. Journal of the European Ceramic Society, 2020, 40(12): 3956-3964.

[41]SHI W M, ZHANG H J, LIU Y C, et al. Improvement on Qm in high-power piezoelectric ceramics through [111]c texture engineering[J]. Journal of Materials Science & Technology, 2025, 216: 260-268.

[42]BIAN L, QI X D, LI K, et al. High-performance [001] c⁃textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices[J]. Advanced Functional Materials, 2020, 30(25): 2001846.

[43]毕新利, 杨世源, 王军霞, 等. 高活性锆钛酸铅压电陶瓷粉体的合成及其烧结性能研究[J]. 中国粉体技术, 2008, 14(4): 4-6.

BI X L, YANG S Y, WANG J X, et al. Research on synthesizing high-active powder of Pb(Zr0.95Ti0.5)O3 and its sintering performance[J]. China Powder Science and Technology, 2008, 14(4): 4-6.

[44]ZHAO H Y, HOU Y D, YU X L, et al. A wide temperature insensitive piezoceramics for high-temperature energy harvesting[J]. Journal of the American Ceramic Society, 2019, 102(9): 5316-5327.

[45]REN X D, LIU X, TANG M Y, et al. Enhanced electromechanical properties and thermal stability of antimony-modified BiScO3-PbTiO3 high-temperature piezoelectric ceramics[J]. Ceramics International, 2023, 49(15): 25658-25664.

[46]DENG J M, LIU C G, WANG S N, et al. Enhanced ferroelectric and piezoelectric properties of Sb/Nb co-doped BiScO3-PbTiO3-based ceramics via relaxation regulation near morphotropic phase boundary[J]. Materials Research Bulletin, 2024, 177: 112840.

[47]ZHAO H Y, YANG H J, GUO Q Q. Large piezoelectricity in BiScO3-PbTiO3 based perovskite ceramics for high-temperature energy harvesting[J]. Ceramics International, 2022, 48(23): 35127-35133.

[48]WANG L, CHAI C C, ZHAO T L, et al. Improved in situ high temperature piezoelectric performance of BiScO3-PbTiO3-Pb(Sn1/3Nb2/3)O3 ceramics for actuator applications[J]. Ceramics International, 2024, 50(23): 51746-51753.

[49]YANG C H, FENG Y Y, ZHANG X F, et al. Excellent high-temperature piezoelectric performances of ternary BiScO3-PbTiO3-(Sr0.7Bi0.2)TiO3 ceramics achieved via multiple optimization strategy[J]. Journal of the European Ceramic Society, 2023, 43(11): 4731-4739.

[50]LEE M S, JEONG Y H. Phase transition behavior and electrical properties of (Bi0.97Sm0.03)ScO3-PbTiO3 textured ceramics MPB-modified by BaTiO3 templates for high temperature piezoelectric device applications[J]. Ceramics International, 2023, 49(23): 37936-37945.

[51]LI B, LI C Y, ZHENG T, et al. Property regulation principle in Mn-doped BF-BT ceramics: competitive control of domain switching by defect dipoles and domain configuration[J]. Advanced Electronic Materials, 2022, 8(11): 2200609.

[52]LUO F, LI Z M, CHEN J Y, et al. Abnormal piezoelectric properties of acceptor doped 0.75BF-0.25BT lead-free ceramics for application in atomizer[J]. Ceramics International, 2023, 49(3): 4377-4385.

[53]JAITA P, MANOTHAM S, RUJIJANAGUL G. Influence of Al2O3 nanoparticle doping on depolarization temperature, and electrical and energy harvesting properties of lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics[J]. RSC Advances, 2020, 10(53): 32078-32087.

[54]KANG F, HE L Q, ZHAO Z Y, et al. Low electric field induced large electromechanical properties of BiFeO3-BaTiO3-based ceramics via phase composition modulation[J]. Journal of the European Ceramic Society, 2023, 43(14): 6031-6040.

[55]WANG X T, YANG X Y, HUANG F H, et al. Enhanced in situ piezoelectric properties and thermal stability of lead-free BiFeO3-BaTiO3 ceramics by local structural heterogeneity[J]. Materials Science in Semiconductor Processing, 2025, 185:108948.

[56]KIM K S, CHOI Y R, CHAE K W, et al. Low temperature sintering and enhanced piezoelectric properties of BiFeO3-BaTiO3 ceramics by homogeneous calcination[J]. Ceramics International, 2024, 50(18): 32447-32456.

[57]YANG J C, HUANG M M, WANG F F, et al. Low temperature sintering, structure and electrical properties of BiFeO3-BaTiO3 based piezoelectric ceramics using CuO-B2O3 composite sintering aids[J]. Materials Science and Engineering: B, 2023, 298: 116872.

[58]SHEN Z P, GUO J, GAO X Y, et al. Advancing piezoelectricity and excellent thermal stability:textured 0.75BF-0.25BTlead-free ceramics for high temperature applications[J]. Journal of Materiomics, 2025, 11(4): 100946.

[59]SUN X X, ZHAO C L, LYU X, et al. Decoding the role of diffused multiphase coexistence in potassium sodium niobate-based ceramics with nanodomains for enhanced piezoelectric devices[J]. ACS Applied Nano Materials, 2020, 3(2): 953-961.

[60]侯立敏, 王新健, 王振行, 等. Ta掺杂和烧结气氛对KNN基无铅压电陶瓷的微观结构和压电性能的影响[J]. 硅酸盐学报, 2022, 50(3): 682-690.

HOU L M, WANG X J, WANG Z X, et al. Influence of Ta doping elements and sintering atmosphere on microstructure and electrical properties for KNN-based lead-free piezoelectric ceramics[J]. Journal of the Chinese Ceramic Society, 2022,50(3): 682-690.

[61]ZHANG Y M, YU Y G, ZHANG N, et al. Simultaneous realization of good piezoelectric and strain temperature stability via the synergic contribution from multilayer design and rare earth doping[J]. Advanced Functional Materials, 2023, 33(11): 2211439.

[62]LIU F Y, ZHANG J L. Attempt for excellent piezoelectric performance in Sb-free (K, Na)NbO3-based ceramics[J]. Ceramics International, 2024, 50(13): 23296-23301.

[63]王垂磊, 侯立敏, 郇宇. (1-x)KNNS-xBFANZ无铅压电陶瓷的结构与性能的研究[J]. 现代技术陶瓷, 2023, 44(5):490-496.

WANG C L, HOU L M, HUAN Y. Study on the structure and properties of(1-x)KNNS-xBFANZ lead-free piezoelectric ceramics[J]. Advanced Ceramics, 2023, 44(5): 490-496.

[64]CHENG Y T, GUAN S Y, WANG Q, et al. Mechanism and application of lead-free KNN-based ceramics with superior piezoelectricity[J]. Journal of the European Ceramic Society, 2024, 44(12): 6978-6986.

[65]SUN X X, LI R C, ZHAO C L, et al. One simple approach, two remarkable enhancements: manipulating defect dipoles and local stress of (K, Na)NbO3-based ceramics[J]. Acta Materialia, 2021, 221: 117351.

[66]LYU X, ZHANG N, WU J G, et al. The role of adding Bi0.5A0.5ZrO3 in affecting orthorhombic-tetragonal phase transition temperature and electrical properties in potassium sodium niobate ceramics[J]. Acta Materialia, 2020, 197: 224-234.

[67]ZHENG T, YU Y G, LEI H B, et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability[J]. Advanced Materials, 2022, 34(8): e2109175.

[68]LI P, GAO S, LU G R, et al. Significantly enhanced piezoelectric temperature stability of KNN-based ceramics through multilayer textured thick films composite[J]. Journal of the European Ceramic Society, 2024, 44(6): 3861-3868.

[69]CHEN J J, WU T, HUANG W S, et al. Giant piezoelectric response and structure evolution of Bi0.5(Na0.3K0.3Li0.4-xBax0.5 ZrO3 modified (K0.48Na0.52)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics[J]. Ceramics International, 2024, 50(9): 14614-14624.

[70]LU G R, ZHAO Y, ZHAO R, et al. High performance (K, Na)NbO3-based textured ceramics for piezoelectric energy harvesting[J]. Ceramics International, 2024, 50(24): 54869-54877.

[71]GO S H, KIM D S, CHAE Y G, et al. Effect of the crystal structure on the piezoelectricity of [001]-textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 lead-free piezoelectric thick film[J]. Actuators, 2023, 12(2): 66.

[72]ZHAI Y Z, QI X D, TIAN G, et al. Improved energy-harvesting performance of (K, Na)NbO3-based ceramics through the synergistic effect of texture and defect engineering[J]. Journal of the European Ceramic Society, 2025, 45(3): 116984.