ISSN 1008-5548

CN 37-1316/TU

最新出版

复合熔盐法提纯天然石墨的工艺参数优化

Process parameter optimization for natural graphite purification via composite molten salt method


王冰1a, 王晓飞1, 彭钢1a, 原晓艳1, 刘丹2, 沈乡峰3, 郭守武14

1.陕西科技大学,a.材料科学与工程学院,b.陕西省无机材料绿色制备与功能化重点实验室, 陕西 西安 710021;

2. 江苏金润环保工程有限公司, 江苏 宜兴 214200; 3.江苏兴望宏建设工程有限公司, 江苏 宜兴 214200;

4.上海交通大学 电子信息与电气工程学院, 上海 200240


引用格式:

王冰, 王晓飞, 彭钢, 等. 复合熔盐法提纯天然石墨的工艺参数优化[J]. 中国粉体技术, 2025, 31(5): 1-9.

WANG Bing, WANG Xiaofei, PENG Gang, et al. Process parameter optimization for natural graphite purification via composite molten salt method[J]. China Powder Science and Technology, 2025, 31(5): 1-9.

DOI:10.13732/j.issn.1008-5548.2025.05.016

收稿日期: 2024-11-26,修回日期: 2025-05-22,上线日期: 2025-06-14。

基金项目: 国家自然科学基金项目,编号: 52272302。

第一作者简介: 王冰(1998—),男,硕士生,研究方向为天然石墨提纯。E-mail:364367776@qq.com。

通信作者简介: 王晓飞(1985—),男,讲师,博士,硕士生导师,研究方向为纳米能源材料。E-mail:wangxiaof@sust.edu.cn。

原晓艳(1985—),女,教授,博士,硕士生导师,研究方向为碳基材料。E-mail: yuanxiaoyan@sust.edu.cn。


摘要: 【目的】 为了改善天然石墨原料的性能,扩大天然石墨的应用领域,基于复合熔盐法提纯天然石墨原料,对工艺参数进行优化,实现提高生产效率、降低能耗、降低生产成本的目标。【方法】 对天然石墨原料进行组分分析,以NaOH、Na2CO3、Li2B4O7、Na2B4O7、Li2CO3作为熔盐组分进行筛选,在室温条件下采用稀盐酸清洗法制备高纯石墨;研究无机盐种类、复合熔盐配方、煅烧温度、天然石墨原料质量对提纯石墨纯度(所含固定碳的质量分数)的影响,对天然石墨原料和提纯石墨的微观形貌进行对比和分析。【结果】 经过2次优化试验,选择NaOH、Na2CO3、Na2B4O7作为复合熔盐的配方组分;当天然石墨原料的纯度为95.770%、质量设为4 g时,NaOH、Na2CO3、Na2B4O7的质量分别为1.0、 0.5、 1.0 g,煅烧温度选为700 ℃,提纯石墨的纯度最高达到99.982%;复合熔盐法在有效去除杂质的同时未对石墨的晶体结构造成破坏,提纯石墨颗粒仍然保持椭球形形貌,但颗粒表面的白色物质明显减少,提纯石墨颗粒表面更加光滑,表明提纯过程有效去除了杂质。【结论】 优化参数后的复合熔盐法提纯天然石墨工艺操作简单,提纯处理后仅须采用稀酸浸渍,提高了生产效率,降低了处理成本。

关键词: 复合熔盐法; 天然石墨; 提纯; 工艺参数

Abstract

Objective To improve the performance of natural graphite raw materials and expand their application scope, a composite molten salt purification method is employed to purify the natural graphite raw materials, and the process parameters are optimized, aiming to improve production efficiency while reducing energy consumption and production costs.

Methods The components of the natural graphite raw materials were analyzed. High-purity graphite was prepared at room temperature using a dilute hydrochloric acid leaching method, with NaOH, Na2CO3, Li2B4O7, Na2B4O7, and Li2CO3 serving as the molten salt components. The effects of inorganic salt types, composite molten salt formulations, calcination temperatures, and the mass of natural graphite raw materials on the purity of purified graphite were studied. Moreover, a comparative analysis of the microscopic morphologies of the natural graphite raw materials and the purified graphite was performed.

Results and Discussion After two rounds of optimization experiments, NaOH, Na2CO3, and Na2B4O7 were selected as the formulation components of the composite molten salt. When the mass fraction of natural graphite raw material was 95.77 % and the mass was set at 4 g, the respective masses of NaOH, Na2CO3, and Na2B4O7 were optimized to 1.0, 0.5, and 1.0 g, with a calcination temperature of 700 ℃. Under these conditions, the mass fraction of purified graphite reached as high as 99.965%, with a mass ratio of NaOH to graphite of 1:5.5, and a composite molten salt to graphite mass ratio of 2.5:4. These parameters achieved an optimal balance between the equipment performance, production efficiency, and processing costs. The characteristic peaks in the X-ray diffraction (XRD) patterns of the purified graphite were highly consistent with the (002), (004), (100), and (110) crystal planes referenced in the graphite standard PDF card (PDF#41-1487), indicating that the composite molten salt method effectively removed impurities while preserving its crystalline structure. The purified graphite particles still maintained their ellipsoidal morphology, though with significantly diminished white substances on the particle surface and notably smoother surfaces, demonstrating the efficacy of the purification process in impurity elimination.

Conclusion The composite molten salt method synergistically enhances the reaction with minerals by leveraging the advantages of individual salt components, effectively reducing alkali consumption while improving graphite purity. In terms of industrial production, this method simplifies the operational procedures, and its efficient alkali treatment process significantly reduces the difficulty of the subsequent acid treatment process.

Keywords:composite molten salt method; natural graphite; purification; process parameter


参考文献(References)

[1]张利锋, 李帅, 宋一飞, 等. N掺杂碳纤维复合Sb2S3柔性电极材料的制备及其性能研究[J]. 陕西科技大学学报, 2023, 41(6): 103-110.

ZHANG L F, LI S, SONG Y F, et al. Study on preparation and properties of N-doped carbon fiber-Sb2S3 composite flexible electrode material[J]. Journal of Shaanxi University of Science & Technology, 2023, 41(6): 103-110.

[2]张利锋, 王凯, 王晓飞, 等. 硅藻土衍生硅碳负极材料的制备及其储锂性能研究[J]. 陕西科技大学学报, 2024, 42(5): 119-125.

ZHANG L F, WANG K, WANG X F, et al. Study on preparation of diatomite-derived silicon carbon anode material and its lithium storage performance[J]. Journal of Shaanxi University of Science & Technology, 2024, 42(5): 119-125.

[3]滕德亮, 李朋, 袁娜, 等. 天然石墨的球形化工艺参数优化[J]. 中国粉体技术, 2021, 27(4): 70-76.

TENG D L, LI P, YUAN N, et al. Process parameters optimization of natural graphite spheroidization[J]. China Powder Science and Technology, 2021, 27(4): 70-76.

[4]HAN S J, XU L, CHEN C, et al. Recovery of graphite from spent lithium-ion batteries and its wastewater treatment application: a review[J]. Separation and Purification Technology, 2024, 330: 125289.

[5]QIU Y S, MAO Z F, SUN K K, et al. Cost-efficient clean flotation of amorphous graphite using water-in-oil kerosene emulsion as a novel collector[J]. Advanced Powder Technology, 2022, 33(11): 103770.

[6]ZHAO Y, FU Y L, MENG Y, et al. Challenges and strategies of lithium-ion mass transfer in natural graphite anode[J]. Chemical Engineering Journal, 2024, 480: 148047.

[7]BAO C G, SHI K, XU P, et al. Purification effect of the methods used for the preparation of the ultra-high purity graphite[J].Diamond and Related Materials, 2021, 120: 108704.

[8]YANG S, ZHANG S Q, DONG W, et al. Purification mechanism of microcrystalline graphite and lithium storage properties of purified graphite[J]. Materials Research Express, 2022, 9(2): 025505.

[9]刘云泽, 孟繁荣, 崔学民, 等. 优化碱酸法提纯石墨的研究[J]. 中国粉体技术, 2024, 30(3): 76-87.

LIU Y Z, MENG F R, CUI X M, et al. Research on optimizing alkaline-acid method for graphite purification[J]. China Powder Science and Technology, 2024, 30(3): 76-87.

[10]魏娜, 刘登, 陈迎新, 等. 湖南某低品位隐晶质石墨浮选提纯试验研究[J]. 非金属矿, 2024, 47(4): 56-59.

WEI N, LIU D, CHEN Y X, et al. Experiment study on the flotation purification of low-grade cryptocrystalline graphite in Hunan[J]. Non-metallic Mines, 2024, 47(4): 56-59.

[11]SHEN K, CHEN X T, SHEN W C, et al. Thermal and gas purification of natural graphite for nuclear applications[J]. Carbon, 2021, 173: 769-781.

[12]JARA A D, BETEMARIAM A, WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: a review[J]. International Journal of Mining Science and Technology, 2019, 29(5): 671-689.

[13]RI H, RI K, KIM K, et al. Effective purification of graphite via low pulp density flotation-low temperature alkali roasting-acid leaching route: from laboratory-scale to pilot-scale[J]. Minerals Engineering, 2022, 188: 107852.

[14]ZHAO S D, CHENG S, XING B L, et al. High efficiency purification of natural flake graphite by flotation combined with alkali-melting acid leaching: application in energy storage[J]. Journal of Materials Research and Technology, 2022, 21: 4212-4223.

[15]谭旭升. 碱酸法提纯石墨及除硅动力学研究[D]. 武汉: 武汉理工大学, 2015.

TAN X S. Study on kinetics of purifying graphite and removing silicon by alkali-acid method[D]. Wuhan: Wuhan University of Technology, 2015.

[16]刘玉海, 李海明. 碱酸法制备高纯石墨试验研究[J]. 矿产保护与利用, 2018, 38(5): 73-78.

LIU Y H, LI H M. Experimental study on the preparation of high purity graphite by alkali-acid method[J]. Conservation and Utilization of Mineral Resources, 2018, 38(5): 73-78.

[17]张劲斌, 罗英涛, 杨宏杰. 碱酸-高温氯化联合法提纯鳞片石墨研究[J]. 炭素技术, 2016, 35(5): 56-60.

ZHANG J B, LUO Y T, YANG H J. Purification of flake graphite by alkaline-acid and high temperature chlorination combination method[J]. Carbon Techniques, 2016, 35(5): 56-60.

[18]QUAN Y, LIU Q F, LI K, et al. Highly efficient purification of natural coaly graphite via an electrochemical method[J]. Separation and Purification Technology, 2022, 281: 119931.

[19]李玉峰, 朱世富, 王磊. 微波非热效应改善天然石墨提纯效果[J]. 新型炭材料, 2012, 27(6): 476-480.

LI Y F, ZHU S F, WANG L. Purification of natural graphite by microwave assisted acid leaching[J]. New Carbon Materials, 2012, 27(6): 476-480.

[20]国家标准化管理委员会. 石墨化学分析方法: GB/T 3521—2023[S]. 北京: 中国标准出版社, 2023.

Standardization Administration of the People’s Republic of China. Methods for chemical analysis of graphite: GB/T 3521—2023[S]. Beijing: Standards Press of China, 2023.