ISSN 1008-5548

CN 37-1316/TU

最新出版

Mg2+、Zr4+共掺ZnGa2O4∶Cr3+基近红外长余辉荧光材料的结构及性能调控

Structure and performance regulation of Mg2+,Zr4+co-doped ZnGa2O4∶Cr3+based near-infrared long persistent luminescence phosphors




夏侯俊卿1, 徐斯怡1, 刘祥雨1, 谢文龙2, 蔡雁美1, 刘易水1, 徐洁宇1,曹立3, 朱 琦3, 刘宗明1

1. 济南大学 材料科学与工程学院, 山东 济南 250022;

2. 中国航发沈阳黎明航空发动机有限责任公司, 辽宁 沈阳 110043;

3. 东北大学 材料科学与工程学院, 辽宁 沈阳 110819


引用格式:

夏侯俊卿, 徐斯怡, 刘祥雨, 等. Mg2+、Zr4+共掺ZnGa2O4∶Cr3+基近红外长余辉荧光材料的结构及性能调控[J]. 中国粉体技术, 2025, 31(5): 1-12.

XIAHOU Junqing, XU Siyi, LIU Xiangyu, et al. Structure and performance regulation of Mg2+,Zr4+co-doped ZnGa2O4∶Cr3+based near-infrared long persistent luminescence phosphors[J]. China Powder Science and Technology, 2025, 31(5): 1−12.

DOI:10.13732/j.issn.1008-5548.2025.05.010

收稿日期:2025-01-08,修回日期:2025-05-12,上线日期:2025-06-12。

基金项目:国家自然科学基金项目,编号 :52371057。

第一作者简介:夏侯俊卿(1992—),男,博士,研究方向为光功能材料。E-mail:mse_xiahoujq@ujn. edu. cn。

通信作者简介: 朱琦(1983—), 男, 教授,博导,研究研究方向为功能陶瓷材料、腐蚀防护涂层、荧光防伪材料。E-mail:zhuq@smm. neu. edu. cn。

摘要:【目的】满足现代工程领域或防伪技术中无激发状态下的光学温度传感,提高近红外长余辉荧光材料的余辉和光学温感性能。【方法】采用高温固相法,在 ZnGa2O4∶Cr3+中掺杂 Mg2+、Zr4+,合成 ZnGa2-x(Mg-Zr)xO4∶Cr3+(x=0~0. 2,掺杂量,原子分数,下同)近红外长余辉荧光粉,系统分析不同Mg2+、Zr4+掺杂量对于ZnGa2O4体系物相结构、发光以及余辉性能的影响,并探究自然光充能的温度传感应用。【结果】 Mg2+、Zr4+掺杂量最高为10%,Mg2+、Zr掺杂量的提高造成晶粒增大,样品带隙逐渐增大;高温煅烧后,样品具有强的吸收可见光能力;Mg2+、Zr4+的掺杂有利于反位缺陷的产生,基质中缺陷增多,导致发射光中 R 线发射及其斯托克斯和反斯托克斯声子边带逐渐减弱,N 线发射逐渐增强;Mg2+、Zr4+的掺杂量过高时, Cr3+与缺陷之间的能量传递增多,无辐射跃迁增多,造成一定能量损失,导致发光减弱;随着Mg2+、Zr4+掺杂量的增加,样品余辉呈现先增加后减小的趋势,x=0. 05的样品发光和余辉效果最好;在黑暗条件下,荧光粉随着温度提升,展现出增强的近红外余辉。【结论】 Mg2+、Zr4+掺杂能提升近红外长余辉荧光粉的余辉性能,制备的荧光粉具有温度依赖性的长余辉性能,可以对自然光进行充能并释放近红外光,是潜在的用于温度传感的自然光可充能材料。

关键词:近红外发光; 长余辉荧光材料; 光学温度传感;性能调控

Abstract

Objective To address the growing demands for excitation-free optical temperature sensing in modern engineering and anticounterfeiting technologies, it is crucial to improve the persistent luminescence and optical temperature-sensing performance of near-infrared( NIR) long persistent luminescence phosphors, broadening their application scenarios.

Methods The ZnGa2-x(Mg-Zr)xO4∶Cr3+(ZGMZC, x=0-0. 2) NIR long persistent luminescence phosphors were synthesized via a high-temperature solid-state method by co-doping Mg2+and Zr4+into ZnGa2O4∶Cr3+ . A systematic analysis was conducted to investigate the effects of different Mg2+-Zr4+doping amounts on the phase structure, luminescence, and persistent luminescence performance of the ZnGa2O4 system. Moreover, the material’s potential for temperature sensing under natural light excitation

was explored.

Results and Discussion The maximum doping amount of Mg2+-Zr4+was 10%. An  increase in Mg2+-Zr4+doping content was observed to enlarge the grain size while progressively widening the band gap. After high-temperature calcination, the samples exhibited strong capability for visible light absorption. The Mg2+-Zr4+doping facilitated the formation of anti-site defects, thereby increasing defects in the matrix. Consequently, the R-line emission and its Stokes and anti-Stokes phonon sidebands (PSB)gradually weakened in the emitted light, while the N-line emission gradually strengthened. However, excessive doping enhanced energy transfer between Cr3+and defects, which promoted more non-radiative transitions, causing energy loss and weakened luminescence. Furthermore, as the Mg2+-Zr4+doping amount rose, the sample's persistent luminescence initially increased and then decreased, with the x=0. 05 sample exhibiting the optimal luminescence performance. Under dark conditions, the NIR persistent luminescence of the phosphors was enhanced with increasing temperature.

Conclusion The persistent luminescence performance of NIR phosphors is significantly enhanced through Mg2+-Zr4+co-doping.The synthesized materials exhibit temperature-dependent long persistent luminescence characteristics, which can be effectively charged under natural light and subsequently emit NIR light. The properties indicate their potential as natural light rechargeable materials for optical temperature sensing.

Keywords:near-infrared luminescence; long persistent luminescence phosphors; optical temperature sensing; performance regulation


参考文献(References)

[1]XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective[ J]. Journal of Luminescence, 2019, 205: 581-620.

[2]孙文周, 赵文娟, 蒋亮. 燃烧法合成超细SrAl2O4:Eu2+,Dy3+长余辉发光材料[J]. 中国粉体技术, 2011, 17(3): 26-29.

SUN W Z, ZHAO W J, J L, et al. Study on long persistence phosphors SrAl2O4:Eu2+, Dy3+synthesized by combustion synthesis method[J]. China Powder Science and Technology, 2011, 17(3): 26-29.

[3]李松坤, 王小平, 王丽军, 等. 长余辉发光材料的研究进展[J]. 材料导报, 2014, 28(3): 63-84.

LI S K, WANG X P, WANG L J, et al. Research advances in persistent luminescent materials[J]. Materials Reports,2014, 28(3): 63-84.

[4]LE MASNE DE CHERMONT Q, CHANEAC C, SEGUIN J, et al. Nanoprobes with near-infrared persistent luminescencefor in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9266-9271.

[5]LECUYER T, TESTON E, RAMIREZ-GARCIA G, et al. Chemically engineered persistent luminescence nanoprobes forioimaging[ J]. Theranostics, 2016, 6(13): 2488-2524.

[6]PAN Z, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[ J]. Nature Materials, 2011, 11(1): 58-63.

[7]MALDINEY T, BESSIERE A, SEGUIN J, et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells[J]. Nature Materials, 2014, 13(4): 418-426.

[8]BESSIÈRE A, SHARMA S K, BASAVARAJU N, et al. Storage of visible light for long-lasting phosphorescence in chromiumdoped zinc gallate[ J]. Chemistry of Materials, 2014, 26(3): 1365-1373.

[9]ALLIX M, CHENU S, VÉRON E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[ J]. Chemistry of Materials, 2013, 25(9): 1600-1606.

[10]ZHUANG Y, UEDA J, TANABE S. Tunable trap depth in Zn(Ga1−xAlx2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence[J]. Journal of Materials Chemistry C, 2013, 1(47): 7849.

[11]XIAHOU J Q, ZHU Q, ZHU L, et al. Lattice-site engineering in ZnGa2O4:Cr3+through Li+doping for dynamic luminescence and advanced optical anti-counterfeiting[J]. Journal of Materials Chemistry C, 2022, 10(20): 7935-7948.

[12]ZHUANG Y X, UEDA J, TANABE S, et al. Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+persistent phosphors[J]. Journal of Materials Chemistry C, 2014, 2(28): 5502.

[13]BESSIÈRE A, SHARMA S K, BASAVARAJU N, et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate[ J]. Chemistry of Materials, 2014, 26(3): 1365-1373.

[14]ABDUKAYUM A, CHEN J T, ZHAO Q, et al. Functional near infrared-emitting Cr3+/Pr3+co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging [J]. Journal of the American Chemical Society, 2013, 135(38): 14125-14133.

[15]XIAHOU J Q, ZHU Q, ZHU L, et al. Local structure regulation in near-infrared persistent phosphor of ZnGa2O4:Cr3+to fabricate natural-light rechargeable optical thermometer [J]. ACS Applied Electronic Materials, 2021, 3(9): 3789-3803.

[16]GONG Z, LIU Y X, YANG J, et al. A Pr3+doping strategy for simultaneously optimizing the size and near infrared persistent luminescence of ZGGO:Cr3+nanoparticles for potential bio-imaging[J]. Physical Chemistry Chemical Physics, 2017,19(36): 24513-24521.

[17]BESSIÈRE A, JACQUART S, PRIOLKAR K, et al. ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness[J]. Optics Express, 2011, 19: 10131-10137.

[18]ZHAO B Q, ZHU Q, SUN X D, et al. Co-doping Zn2+/Sn4+in ZnGa2O4:Cr3+for dynamic near-infrared luminescence and advanced anti-counterfeiting[ J]. Ceramics International, 2021, 47(12): 17000-17007.

[19]ADACHI S. Luminescence spectroscopy of Cr3+in an oxide: a strong or weak crystal-field phosphor?[J]. Journal of Luminescence,2021, 234: 117965.

[20]QIN J, XIANG J M, SUO H, et al. NIR persistent luminescence phosphor Zn1.3Ga1.4Sn0.3O4:Yb3+,Er3+,Cr3+with excitation of 980 nm laser [J]. Journal of Materials Chemistry C, 2019, 7(38): 11903-11910.

[21]RELVAS M S, SOARES M R N, PEREIRA S O, et al. Trends in Cr3+red emissions from ZnGa2O4 nanostructures produced by pulsed laser ablation in a liquid medium[ J]. Journal of Physics and Chemistry of Solids, 2019, 129: 413-423.

[22]刘军, 康明, 孙蓉, 等. 高温固相法制备CaCO3:Eu3+,Li+红色荧光粉[J]. 中国粉体技术, 2008, 14(3): 28-31.

LIU J, KANG M, SUN R, et al. Preparation of CaCO3:Eu3+, Li+red phosphor by high temperature solid-state reaction method[J]. China Powder Science and Technology, 2008, 14(3): 28-31.

[23]WEIBEL A, BOUCHET R, BOULC' F, et al. The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders[ J]. Chemistry of Materials, 2005, 17(9): 2378-2385.

[24]WANG B, LIN H, HUANG F, et al. Non-rare-earth BaMgAl10-2xO17:xMn4+,xMg2+: a narrow-band red phosphor for use as a high-power warm w-LED[ J]. Chemistry of Materials, 2016, 28(10): 3515-3524.

[25]MIESSLER G. inorganic chemistry: international edition[ J]. Physikalische Blätter, 2010, 50(5):470-472.

[26]SHI J, SUN X, LI J, et al. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging[ J]. Biomaterials, 2015, 37: 260-270.

[27]ZOU R, GONG S, SHI J, et al. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core-shell nanoprobes for in vivo imaging[J]. Chemistry of Materials, 2017, 29(9): 3938-3946.

[28]BASAVARAJU N, PRIOLKAR K R, GOURIER D, et al. The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+doped AB2O4( A=Zn or Mg and B=Ga or Al)[J]. Physical Chemistry Chemical Physics,2015, 17(3): 1790-1799.

[29]HÖLSÄ J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence[J]. The Electrochemical Society Interface, 2009, 18: 42-45.

[30]PAN Z, CASTAING V, YAN L, et al. Facilitating low-energy activation in the near-infrared persistent luminescent phosphor Zn1+xGa-2xSnxO4:Cr3+via crystal field strength modulations[J]. Journal of Physical Chemistry C, 2020, 124(15):8347-8358.