ISSN 1008-5548

CN 37-1316/TU

最新出版

金属3D打印粉末制备技术研究进展

Research progress in powder preparation techniques for metal 3D printing


高玉来, 武悦慧

上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室, 材料科学与工程学院,上海 200444


引用格式:

高玉来, 武悦慧. 金属3D打印粉末制备技术研究进展[J]. 中国粉体技术, 2025, 31(6): 1-19.

GAO Yulai, WU Yuehui. Research progress in powder preparation techniques for metal 3D printing[J]. China Powder Science and Technology, 2025, 31(6): 1-19.

DOI:10.13732/j.issn.1008-5548.2025.06.005

收稿日期: 2024-12-28, 修回日期: 2025-03-28,上线日期: 2025-06-04。

基金项目: 国家自然科学基金项目,编号:52071193。

第一作者简介: 高玉来(1975—),男,教授,博士,博士生导师,研究方向为金属凝固组织调控及先进材料焊接。E-mail:ylgao@shu.edu.cn。

摘要: 【目的】 为了深入探讨金属3D打印技术的发展趋势及其在制造业中的应用前景,开展对金属3D打印粉末制备方法、粉末特性及缺陷分析的研究,旨在推动该技术的进一步发展提供理论依据和实践指导。【研究现状】 综述金属3D打印粉末的基本要求,如粉末的粒度、 金属粉末的球形度、 松装密度及流动性、金属粉末的纯净度及其他物理性能,金属3D打印粉末具有空心球缺陷、 卫星球缺陷、 球形度不佳、 粒度分布不均匀等典型缺陷; 概括金属3D打印粉末的主要技术,包括流体雾化法、 超声波雾化法、 离心雾化法、 等离子体雾化法、 等离子体球化法等。【结论与展望】认为3D打印粉末目前仍面临技术难题和设备限制,如提高细粉收率、 缩窄粒径分布、 降低氧含量等,且高品质粉末价格昂贵,工艺稳定性不足,限制3D打印技术的发展; 认为随着技术的不断创新和工艺的持续优化,通过融合人工智能和机器学习技术,金属3D打印将向智能化和自动化的生产流程迈进,金属3D打印粉末的制备将更加高效、 环保、 经济,显著提升成本效益,并推动金属3D打印领域持续发展。

关键词: 3D打印; 金属粉末; 粉末制备; 雾化法; 粉末特性


Abstract

Significance Metal 3D printing, as a cutting-edge additive manufacturing (AM)technique, has exhibited great potential in its applications in aerospace, medical, automotive, and other high-tech industries, providing an efficient and flexible approach for metal component production. To comprehensively understandits development trendsand industrial applications, this paper reviews current research on metal 3D printing powders, focusing on powder preparation methods.

Progress The printing quality and performance of metal 3D formed parts are significantly influenced by the metal powders’ defects and characteristics, including particle size, sphericity, bulk density,flowability, and purity. Particle size affects powder reactivity and flowability, with different manufacturing processes requiring specific sizes. Powders with high sphericity exhibit better flowability and produce components with higher forming quality. Bulk density and flowability are affected by particle shape, size distribution, and surface condition, with higher bulk density promoting the formation of continuous melt pools during printing. Purity is equally important, as high-purity powders reduce the impact of impurities on performance, especially with strict control over oxygen content. Tapped density also affects the density and mechanical properties of printed parts. Despite advances in manufacturing, metal powders still have typical defects that compromise printing quality. Hollow spheres formwhen voids develop within metal droplets, reducing the density and mechanical properties of printed parts. Satellite particles occur when smaller particles adhere to larger ones, affecting powder flowability and forming quality. Poor sphericity of powders, due to irregular particle shapes, leads to uneven powder distribution and reduces mechanical properties. Non-uniform particle size distribution increases porosity and reduces fatigue life. To improve printing quality, various powder preparation methods for metal 3D printing are employed, mainly including gas atomization, water atomization, ultrasonic atomization, centrifugal atomization, plasma atomization, and plasma spheroidization.These techniques are suitable for different application scenarios and material systems. Gas atomization uses high-pressure inert gases to atomize liquid metal, which is cost-effective and highly efficient but requires optimization of powder sphericity and particle size distribution. Water atomization enables fast cooling but results in higher oxygen content, affecting the performance of final printed parts. Ultrasonic atomization employs high-frequency vibrations to produce highly spherical droplets with uniform size distribution. Centrifugal atomization prepares metal powders through high-speed rotation, suitable for producing powders of larger particle sizes. Plasma atomization meltswire using high-temperature plasma, producing powders with high sphericity, purity, and low oxygen content. Plasma spheroidization transforms irregular particles into spherical ones using high temperature and surface tension effects, significantly improving powder quality. Despite progress, challenges remain in producing fine powders with narrow size distributions while maintaining low oxygen content. Further development is needed to enhance powder quality consistency and process stability.

Conclusions and Prospects Metal 3D printing technology, with its unique advantages, has revolutionized manufacturing industry. Its mature printing methods and advanced metal powder systems enable the manufacturing of high-precision and high-strength components. As the technology continues to evolve through technological innovation and process optimization, future developments should focus on cost control and accuracy improvement. The integration of emerging technologies, such as artificial intelligence and machine learning, is driving significant advancements in powder production processes and material cost reduction. These developments are accelerating the transition toward more intelligent and automated production processes. Moreover,powder preparation methods are progressing toward more efficient, environmentally sustainable, and economically viable solutions. The improvements in cost-effectiveness and quality of final products broaden their applications and adoption in more fields, enabling customized production of special parts with complex shapes.

Keywords: 3D printing; metal powder; powder preparation; atomization technique; powder characteristics

参考文献(References)

[1]汤槟晖, 徐婷, 孙志丹, 等. 金属激光三维打印技术研究现状及其发展趋势[J]. 材料保护, 2020, 53(6): 132-138.

TANG B H, XU T, SUN Z D, et al. Research status and development trends of metal laser 3D printing technology[J]. Materials Protection, 2020, 53(6): 132-138.

[2]SHEKSHEEV M A, POLYAKOVA M A, KORCHUNOV A G, et al. Analysis of trends in the development of 3D printing technologies with metal-based powder materials[J]. Metallurgist, 2023, 66(9/10): 1282-1289.

[3]YANG F, LI Y L, SHEN C X, et al. Research progress on preparation and forming of titanium and titanium alloy powders[J]. Powder Metallurgy Technology, 2023, 41(4): 330-337.

[4]FREDRIKSSON W, PETRINI D, EDSTROEM K, et al. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels[J]. Corrosion Science, 2013, 67(2): 268-280.

[5]黄永建, 刘军会, 杨进航, 等. 增材制造模具的研究进展[J]. 中国冶金, 2019, 29(11): 6-15.

HUANG Y J, LIU J H, YANG J H, et al. Research progress on additive manufacturing of mold steel[J]. China Metallurgy, 2019, 29(11): 6-15.

[6]徐大召, 孟令刚, 杨春峰, 等. 高性能铝合金外场辅助半连续铸造研究进展[J]. 中国材料进展, 2022, 41(11): 880-890.

XU D Z, MENG L G, YANG C F, et al. Research progress of external field assisted semi-continuous casting for high performance aluminum alloys[J]. Materials China, 2022, 41(11): 880-890.

[7]NI L Y, HE S T, HUANG Y L, et al. Near net forming research for fin-typed LED radiator[J]. Materials, 2022, 15(5): 1736.

[8]LIU Y Y, ZHENG L J, ZHANG H. Research progress in Al-Fe-V-Si heat resistant alloys prepared by rapid solidification[J]. Journal of Materials Engineering, 2015, 43(11): 91-97.

[9]KUSOGLU I M, GÖKCE B, BARCIKOWSKI S. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489.

[10]张曦, 梁恩泉. 高强铝合金激光选区烧结: 材料与机械性能[J]. 纤维复合材料, 2018, 35(2): 49-56.

ZHANG X, LIANG E Q. High strength aluminum alloy laser selective sintering: material and mechanical properties[J]. Fiber Composites, 2018, 35(2): 49-56.

[11]张贤富. 3D打印对首饰个性化定制过程的重塑研究[J]. 包装工程, 2018, 39(12): 180-185.

ZHANG X F. Reshaping of jewelry personalization process with 3D printing[J]. Packaging Engineering, 2018, 39(12): 180-185.

[12]KHAN M, DICKENS P. Selective laser melting (SLM) of pure gold for manufacturing dental crowns[J]. Rapid Prototyping Journal, 2014, 20(6): 471-479.

[13]YOUNG Z, QU M L, CODAY M M, et al. Effects of particle size distribution with efficient packing on powder flowability and selective laser melting process[J]. Materials, 2022, 15(3): 705.

[14]YAN J S, WANG M H, ZHANG T G, et al. Research progress in preparation technology of micro and nano titanium alloy powder[J]. Nanotecnology Reviews, 2024, 13(1): 0016.

[15]樊恩想, 曹章轶, 廖文俊. 粉末特性对激光选区熔化三维打印成形的影响[J]. 机械制造, 2022, 60(7): 51-54.

FAN E X, CAO Z Y, LIAO W J. The influence of powder characteristics on laser selective melting 3D printing[J]. Machinery, 2022, 60(7): 51-54.

[16]张兰, 夏慧敏, 马会中, 等. 粉末冶金铝合金的研究综述[J]. 粉末冶金工业, 2020, 30(5): 78-83.

ZHANG L, XIA H M, MA H Z, et al. A review on the research of powder metallurgy aluminum alloys[J]. Powder Metallurgy Industry, 2020, 30(5): 78-83.

[17]高超峰, 余伟泳, 朱权利, 等. 3D打印用金属粉末的性能特征及研究进展[J]. 粉末冶金工业, 2017, 27(5): 53-58.

GAO C F, YU W Y, ZHU Q L, et al. Research progress on the performance characteristics of metal powders for 3D printing[J]. Powder Metallurgy Industry, 2017, 27(5): 53-58.

[18]刘文莉, 杨正红, 王莘泉. 粒度粒形分析技术用于3D打印球形金属粉末的球形度和卫星化测定:兼议GB/T 39251—2020[J]. 粉末冶金材料科学与工程, 2022, 27(5): 559-568.

LIU W L, YANG Z H, WANG X Q. Measurement of the sphericity and satellity of 3D printing metal powder by imaging particle size analysis:with argument on GB/T 39251—2020[J]. Materials Science and Engineering of Powder Metallurgy,2022, 27(5): 559-568.

[19]马宽, 唐洪奎, 卓君, 等. 粉末球形度对高速激光熔覆层质量的影响[J]. 铸造, 2022, 71(5): 586-591.

MA K, TANG H K, ZHUO J, et al. Effect of powder sphericity on quality of coatings prepared by high-speed laser cladding[J]. China Foundry, 2022, 71(5): 586-591.

[20]WU L Z, WEN Y J, ZHANG B C, et al. Research status of selective laser melting aluminum alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 549-562.

[21]YANG Q, HU Y, DING Y T, et al. Properties and formability of IN738 alloy powder for selective laser melting[J]. Laser & Optoelectronics Progress, 2019, 56(10): 202-209.

[22]BAITIMEROV R, LYKOV P, ZHEREBTSOV D, et al. Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting[J]. Materials, 2018, 11(5): 742.

[23]SUTTON A T, SEHHAT M H, LEU M C, et al. Modeling powder spreadability in powder-based processes using the discrete element method[J]. Additive Manufacturing, 2024, 92: 104345.

[24]YU P F, LI J, LIU Y. Study on flowability regulation of vacuum gas-atomized Fe-Cr-Ni-W-B spherical powder[J]. Materials, 2024, 17(6): 1264.

[25]ZHAO Y F, CUI Y J, HASEBE Y, et al. Controlling factors determining flowability of powders for additive manufacturing: a combined experimental and simulation study[J]. Powder Technology, 2021, 393: 482-493.

[26]RIABOV D, HRYHA E, RASHIDI M, et al. Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing[J]. Surface and Interface Analysis, 2020, 52(11): 694-706.

[27]高文英, 王凯, 张伟强, 等. 选区熔化成形铝合金技术研究进展[J]. 热加工工艺, 2020, 49(18): 17-20.

GAO W Y, WANG K, ZHANG W Q, et al. Research progress on selective melting forming technology of aluminum alloy[J]. Hot Working Technology, 2020, 49(18): 17-20.

[28]WANG Y, QU D, LIU S F, et al. Research and applications of metal lattice sandwich structure fabricated by additive manufacturing[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(4): 1022-1051.

[29]ZHU H L, TONG H H, YANG F Z, et al. Plasma-assisted preparation and characterization of spherical stainless steel powders[J]. Journal of Materials Processing Technology, 2018, 252: 559-566.

[30]ZHU H L, LI X Y, CHEN Q. Three-dimensional simulation and experimental investigation on spheroidization of stainless steel powders using radio frequency thermal plasma[J]. Journal of Materials Engingeering and Performance, 2022, 31(8):6606-6616.

[31]WANG P, LI X G, ZHOU X L, et al. Numerical simulation on metallic droplet deformation and breakup concerning particle morphology and hollow particle formation during gas atomization[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(7): 2074-2094.

[32]李安, 罗成, 杨博文, 等. 3D打印用钛合金及粉末制备技术研究进展[J]. 粉末冶金工业, 2024, 34(2): 127-133,146.

LI A, LUO C, YANG B W, et al. Research progress on titanium alloy and powder preparation technology for 3D printing[J]. Powder Metallurgy Industry, 2024, 34(2): 127-133, 146.

[33]WANG W Q, AO B, WU G H, et al. Three-dimensional imaging and hollow powder analysis of GH3625 powder for additive manufacturing[J]. Rare Metal Materials and Engineering, 2020, 49(6): 2024-2028.

[34]XIONG L H, CHUANG A C, THOMAS J, et al. Defect and satellite characteristics of additive manufacturing metal powders[J]. Advanced Powder Technology, 2022, 33(3): 103486.

[35]NIE Y, TANG J J, YANG B B, et al. Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process[J]. Advanced Powder Technology, 2020, 31(5): 2152-2160.

[36]ZHANG L C, XU W Y, LI Z, et al. Mechanism of rapidly solidified satellites formation in gas atomized powders: simulation and characterization[J]. Powder Technology, 2023, 418: 118162.

[37]CHU F Z, ZHANG K, SHEN H P, et al. Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in laser powder bed fusion[J]. Journal of Materials Research and Technology, 2021, 11: 2059-2073.

[38]ZHAO Y, AOYAGI K, DAINO Y, et al. Significance of powder feedstock characteristics in defect suppression of additively manufactured Inconel 718[J]. Additive Manufacturing, 2020, 34: 101277.

[39]QING Y Q, GUO K K, LIU C, et al. Impact of atomization pressure on the particle size of nickel-based superalloy powders by numerical simulation[J]. Materials, 2022, 15(9): 3020.

[40]NGUEJIO J, MOKHTARI M, PACCOU E, et al. Combined effect of a spread powder particle size distribution, surface machining and stress-relief heat treatment on microstructure, tensile and fatigue properties of 316L steel manufactured by laser powder bed fusion[J]. Interantional Journal of Advanced Manufacturing Technology, 2024, 131(2): 563-583.

[41]HUSSAIN R, MEHMET A N, WOYESSA G, et al. An ultra-compact particle size analyser using a CMOS image sensor and machine learning[J]. Light: Science& Applications, 2020, 9(1): 21.

[42]蒋保林, 管晓颖, 魏放, 等. PREP工艺参数对GH3536高温合金粉末性能的影响[J]. 现代制造技术与装备, 2024, 60(1): 132-134, 138.

JIANG B L, GUAN X Y, WEI F, et al. Influence of PREP process parameters on the performance of GH3536 superalloy powder[J]. Modern Manufacturing Technology and Equipment, 2024, 60(1): 132-134, 138.

[43]KOROBEINIKOV I, PERMINOV A, DUBBERSTEIN T, et al. Modification of liquid steel viscosity and surface tension for inert gas atomization of metal powder[J]. Metals, 2021, 11(3): 521.

[44]RUAN G, LIU C, QU H Q, et al. A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process[J]. Materials Science and Engineering A, 2022, 850: 143589.

[45]QI H, ZHOU X L, LI J H, et al. Performance testing and rapid solidification behavior of stainless steel powders prepared by gas atomization[J]. Materials, 2021, 14(18): 5188.

[46]WU J L, XIA M, WANG J F, et al. Raw metal powders production for powder metallurgy additive manufacturing by electrode induction melting gas atomization method: a review[J]. Materials Review, 2023, 37(21): 185-192.

[47]张玮, 尚青亮, 刘捷, 等. 气体雾化法制备粉体方法概述[J]. 云南冶金, 2018, 47(6): 59-63.

ZHANG W, SHANG Q L, LIU J, et al. An overview of powder preparation methods by gas atomization[J]. Yunnan Metallurgy, 2018, 47(6): 59-63.

[48]WEI M W, CHEN S Y, SUN M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J]. Powder Technology, 2020, 367: 724-739.

[49]LYU W Y, YANG F, HAN G F, et al. Preparation of low-alloy steel powders for additive manufacturing by VIGA and EIGA gas atomization[J]. China Surface Engineering, 2020, 33(5): 115-122.

[50]WU J L, XIA M, WANG J F, et al. Effect of electrode induction melting gas atomization on powder quality: satellite formation mechanism and pressure[J]. Materials, 2023, 16(6): 2499.

[51]LI A, LIU S F, WANG B J, et al. Research progress on preparation of metal powder for 3D printing[J]. Journal of Iron and Steel Research, 2018, 30(6): 419-426.

[52]LI H L, SHEN Y P, LIU P, et al. Multi-physics coupling simulation of electrode induction melting gas atomization for advanced titanium alloys powder preparation[J]. Scientific Reports, 2021, 11(1): 23106.

[53]PEINADO G, CARVALHO C, JARDINI A, et al. Microstructural and mechanical characterization of additively manufactured parts of maraging 18Ni300M steel with water and gas atomized powders feedstock[J]. International Journal of Advan-ced Manufacturing Technology, 2024, 130(1/2): 203-221.

[54]张康, 杨博文, 秦立东, 等. 金属增材制造用粉末制备技术研究进展[J]. 金属加工(热加工), 2023(3): 24-31.

ZHANG K, YANG B W, QIN L D, et al. Research progress on powder preparation technology for metal additive manufacturing[J]. MW Metal Forming, 2023(3): 24-31.

[55]陈莹莹, 肖志瑜, 李上奎, 等. 3D打印用金属粉末的制备技术及其研究进展[J]. 粉末冶金工业, 2018, 28(4): 56-61.

CHEN Y Y, XIAO Z Y, LI S K, et al. The preparation technology and research progress of metal powder for 3D printing[J]. Powder Metallurgy Industry, 2018, 28(4): 56-61.

[56]ZRODOWSKI Ł, WROBLEWSKI R, CHOMA T, et al.Novel cold crucible ultrasonic atomization powder production method for 3D printing[J]. Materials, 2021, 14(10): 2541.

[57]ZHANG Y, YUAN S M, GAO Y. Spatial distribution and transient evolution of sub-droplet velocity and size in ultrasonic atomization[J]. Experimental Thermal and Fluid Science, 2023, 140: 110761.

[58]ZHANG H, ZHANG X, YI X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces[J]. Experimental Thermal and Fluid Science, 2020, 112: 110019.

[59]DALMORO A, BARBA A A, D'AMORE M. Analysis of size correlations for microdroplets produced by ultrasonic atomization[J]. Scientific World Journal, 2013, 39(4): 235-255.

[60]ZRODOWSKI Ł, WRÓBLEWSKI R, CHOMA T, et al. Novel cold crucible ultrasonic atomization powder production method for 3D printing[J]. Materials, 2021, 14(10): 2541.

[61]FEDOROV D M, GOGAEV K O, RADCHENKO O K, et al. Calculation of geometrical parameters of the laval nozzle and gas dynamic spraying conditions in the production of fine tool steel powders[J]. Powder Metallurgy and Metal Ceramics, 2022, 61(7/8): 389-397.

[62]JEDYNAK A, HAERTEL S, PIPPIG R, et al. Processability of aluminum-matrix composite (AMC) by ultrasonic powder atomization[C]//Materials Research Forum LLC. Proceedings of the 27th International ESAFORM Conference on Material Forming: 2024. Millersville PA: Materials Research Forum LLC, 2024: 156-163.

[63]GRZELAK K, BIELECKI M, KLUCZYNSKI J, et al. A comparative study on laser powder bed fusion of differently atomized 316L stainless steel[J]. Materials, 2022, 15(14): 4938.

[64]全欣, 尹建国, 刘岳, 等. 离心雾化法生产铸钢丸工艺优化[J]. 山东工业技术, 2020(1): 105-109.

QUAN X, YIN J G, LIU Y, et al. Optimization of the centrifugal atomization process for the production of cast steel shot[J]. Shandong Industrial Technology, 2020(1): 105-109.

[65]PENG L, LI L, ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3456-3466.

[66]DONG W, MENG Y, XU F M, et al. Preparation of tin alloys spherical fine metal powders by centrifugal atomization basedon mono-sized droplets[J].Journal of Materials Engineering, 2020, 48(9): 124-131.

[67]USKOKOVIC D, USKOKOVIC V. Magical spherical particles produced by centrifugal atomization[J]. Powder Technology,2024, 444: 120017.

[68]YU S, ZHAO Y G, ZHAO G Y, et al. Review on preparation technology and properties of spherical powders[J]. International Journal of Advanced Manufacturing Technology, 2024, 132(3/4): 1053-1069.

[69]CUI Y J, ZHAO Y F, NUMATA H, et al.Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process[J]. Powder Technology, 2021, 393: 301-311.

[70]HSU T I, WEI C M, WU L D, et al. Nitinol powders generate from plasma rotation electrode process provide clean powder for biomedical devices used with suitable size, spheroid surface and pure composition[J]. Scientific Reports, 2018, 8(1):13776.

[71]CUI Y J, ZHAO Y F, NUMATA H, et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder[J]. Powder Technology, 2020, 376: 363-372.

[72]ZHAO Y F, CUI Y J, NUMATA H, et al. Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process[J]. Scientific Reports, 2020, 10(1): 18446.

[73]CUI Y J, ZHAO Y F, NUMATA H, et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process[J]. Powder Technology, 2021, 393: 301-311.

[74]YURTKURAN E, UNAL R. Theoretical and experimental investigation of Ti alloy powder production using low-power plasma torches[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 175-191.

[75]YE K, LIANG F, YAO Y C, et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 2011-2021.

[76]LIN X, LIN T, XU G J, et al. Three-dimensional numerical simulation of high-speed shear crushing of high-density fluid[J]. Processes, 2024, 12(10): 2246.

[77]DHARMANTO, SUNAR B A, SUGENG S, et al. New design of conduit plasma atomization for fabricating spherical metal powder and its optimization using design of experiments method[J]. Powder Metallurgy and Metal Ceramics, 2022, 60(9/10): 531-545.

[78]张卫刚, 孙杨, 郑敏, 等. 直流等离子体球化钨粉制备及其性能研究[J]. 中国材料进展, 2024, 43(8): 753-759.

ZHANG W G, SUN Y, ZHENG M, et al. Preparation and performance study of tungsten powder by direct-current plasma spheroidization[J]. Materials China, 2024, 43(8): 753-759.

[79]YE K, LIANG F, YAO Y C, et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 2011-2021.

[80]王伟远, 时卓, 刘坤, 等. 采用高频等离子技术制备球形陶瓷粉末[J]. 信息记录材料, 2020, 21(1): 6-7.

WANG W Y, SHI Z, LIU K, et al. Preparation of spherical ceramic powder by high-frequency plasma technology[J]. Information Recording Materials, 2020, 21(1): 6-7.

[81]张庆磊, 郝振华, 李静, 等. 感应等离子体球化法制备球形金属粉体的研究进展[J]. 稀有金属材料与工程, 2020, 49(8): 2895-2903.

ZHANG Q L, HAO Z H, LI J, et al. Research progress on preparation of spherical metal powders by induction plasma spheroidization[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2895-2903.

[82]KRISHNA R, SREENIVASAN M, LYUTYK M, et al. Radio frequency plasma spheroidization of alumina as a feedstock material for ceramic 3D printing[J]. Journal of Materials Engineering and Performance, 2024,34(3): 2332-2343.

[83]MING X, XIONG C Y, WEI C K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroi-dization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 917: 165501.

[84]SRIKAR S K, PREMKUMAR M A, RANJAN S G, et al. Spherical metal powders through RF plasma spherodization[J]. Powder Technology, 2022, 400: 117225.

[85]HAO Z H, CHEN Y H, FU Z H, et al. A comparative study on spheroidization of sodium reduced and hydrogenation-dehydrogenation tantalum powder by RF plasma[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105624.

[86]ONWUKA O S, UNACHUKWU G O, NWANYA S C. Design and development of a brush atomization machine for metal powder production[J]. Scientific African, 2021, 14: e00986.