ISSN 1008-5548

CN 37-1316/TU

最新出版

聚合羟基铝改性煤系高岭土的吸附除氟性能

Adsorption performance of polyhydroxy⁃aluminum⁃modified coal⁃series kaolin for fluoride removal


撒勒只兀特斯特古乐, 珠拉沁海日罕, 穆斯琴特格希

内蒙古师范大学 化学与环境科学学院, 内蒙古自治区绿色催化重点实验室, 内蒙古 呼和浩特 010022

引用格式:

撒勒只兀特斯特古乐, 珠拉沁海日罕, 穆斯琴特格希. 聚合羟基铝改性煤系高岭土的吸附除氟性能[J]. 中国粉体技术, 2025, 31(4): 1-14.

SALTSUUD Sitegule, ZULCHIN Hairihan, MUSCHIN Tegshi. Adsorption performance of polyhydroxy⁃aluminum⁃modified coal⁃series kaolin for fluoride removal[J]. China Powder Science and Technology, 2025, 31(4): 1-14.

DOI:10.13732/j.issn.1008-5548.2025.04.014

收稿日期: 2024-12-04, 修回日期: 2025-03-22,上线日期: 2025-06-03。

基金项目: 国家自然科学基金项目, 编号: 22061034。

第一作者简介: 撒勒只兀特斯特古乐(2001—),女(蒙古族),硕士生,研究方向为黏土资源综合利用、 水污染物吸附以及多相催化有机合成。E-mail:s20234014021@163.com。

通信作者简介: 穆斯琴特格希(1980—),男(蒙古族),副研究员,博士,硕士生导师,研究方向为黏土资源综合利用、 水污染物吸附以及多相催化有机合成。E-mail:tegshi@imnu.edu.cn。

摘要: 【目的】 为了有效提升煤系高岭土吸附去除水中氟离子性能,从而提高煤系高岭土在吸附领域的有效利用价值。【方法】 首先对高岭土进行球磨处理后通过利用聚合羟基铝溶液对其进行改性,并通过X射线粉末衍射仪(X‐ray diffraction,XRD)、 N2吸附-脱附、 透射电子显微镜-能谱分析(transmission electron microscopy-energy dispersive spectroscopy,TEM-EDS)等手段对其结构及表面特征变化进行表征,探讨其对水中氟离子吸附性能; 考察吸附条件对改性高岭土氟离子吸附容量的影响,包括吸附时间、 溶液pH和氟离子初始质量浓度。 【结果】 聚合羟基铝改性方法能够使高岭土的比表面积增大,达到52.0 m2/g,并且显著提高对氟离子的吸附性能,氟离子去除率达到95%,与未改性高岭土的(氟离子去除率为5%)相比有明显提升; 聚合羟基铝改性高岭土样品在吸附过程中具有良好的pH稳定性; 振荡时间为100 min时吸附效果最佳,氟离子初始质量浓度为50 mg/L时样品吸附量最高,为2.77 mg/g。 【结论】 通过结合球磨和聚羟基铝对高岭土进行改性能够有效提高吸附除氟性能,氟离子吸附动力学符合准二级动力学模型,平衡数据可用弗伦德利希(Freundlich)吸附等温模型描述。

关键词: 煤系高岭土; 聚合羟基铝改性; 除氟; 吸附性能

Abstract

Objective Kaolin, characterized by its unique layered structure and strong ion exchange capacity, has been widely used in environmental pollution prevention and wastewater treatment. However, coal-serieskaolin,often discarded as solid waste during coal processing, remains severely underutilized. To enhance its tilization rate, modification treatments are necessary.

Methods In this study, coal-series kaolin from Inner Mongolia was ball-milled and impregnated with alkali, followed by modification in a polyhydroxy-aluminum solution,which was prepared using different ratios of Al3+and OH-. The adsorption capacity of modified kaolin for fluoride (F-)was evaluated. Additionally, influencing factors, including adsorption time, initial solution pH, initial concentration of F-, and the adsorption isotherms and kinetics, were examined to analyze the effects of adsorption conditions on its adsorption performance.

Results and Discussion The kaolin samples after polyhydroxy-aluminum modification were characterized byX-ray diffraction(XRD), N2 adsorption-desorption, transmission electron microscopy(TEM), and energy dispersive spectroscopy (EDS). The results showed that the specific surface area of modified kaolin increased significantly while its structure remained largely unchanged. The removal rate for F- reached 95% at a F- concentration of 10 mg/L, 20 times higher than that of raw kaolin(5%), demonstrating enhanced F- adsorption performance. Adsorption condition analysis revealed that the optimal F- adsorption performance occurred at a solution pH of 7.0 to 8.0, a thermodynamic temperature of 298 K, a shaking time of 100 min,and a shaking frequency of 200 r/min. The adsorption mechanism was also explored through the evaluation of adsorption kinetics and isotherm models. The adsorption isotherm data conformed to the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model.

Conclusion In this study, a polyhydroxy-aluminum modification method is used to enhance the F- adsorption capacity for coal-serieskaolin.This approach has the advantage of simple preparation process, low cost, low energy consumption, and environmental friendliness. It can effectively improve the adsorption performance of coal-series kaolin for F- ion from water.This approach enhances the effective utilization of coal-series kaolin waste resources and provides a cost-effective adsorbent for treating F--containing water, thereby achieving waste treatment through waste utilization.Future research can explore the recycling potential of polyhydroxy-aluminum-modified kaolin adsorbents to reduce water treatment costs.

Keywords: coal-series kaolin; polyhydroxy-aluminum modification; fluoride removal; adsorption performance


参考文献(References)

[1]BHATTACHARYYA G K,GUPTA S S.Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review[J]. Advances in Colloid and Interface Science, 2007, 140(2): 114-131.

[2]ANDREA F, ANDREI D, JANA P, et al. Modification of the filler based on kaolin and its use in the polymer composites[J]. MATEC Web of Conferences, 2022, 357: 101051.

[3]KAUR G, GUPTA S, PRAKASH V, et al. A comprehensive review of varied applications of modified halloysite nanocomposites[J]. Nano-structures & Nano-objects, 2024, 39: 101230.

[4]ASHUTOSH A, NILAM G, VIMALKUMAR P, et al. An overview of kaolin and its potential application in thermosetting polymers[J]. Materials Today Communications, 2023, 36: 106827.

[5]杜雅琴, 张进, 赵建国, 等. 煤系高岭土的制备及其在涂料中的应用研究[J]. 涂料工业, 2019, 49(4): 53-57.

DU Y Q, ZHANG J, ZHAO J G, et al. Preparation of coal based kaolin and its application in coatings[J]. Coatings Industry, 2019, 49(4): 53-57.

[6]张庆斌. 煤系高岭土改性及其在橡胶中的应用研究[D]. 青岛: 青岛科技大学, 2020.

ZHANG Q B. Study on modification of coal bearing kaolin soil and its application in rubber[D]. Qingdao: Qingdao University of Science and Technology, 2020.

[7]OLIVEIRA R P, COSTA C R, MALVESSIS D, et al. Nanocomposites of kaolin modified with oregano essential oil for application in antibacterial packaging[J]. Applied Clay Science, 2023, 241: 107004.

[8]GAN C J, HU H J, MENG Z Y, et al. Localclays from China as alternative hemostatic agents[J]. Molecules, 2023, 28(23):103390.

[9]BHATTACHARYA M, BARBHUIYA H N, SINGH P S. Single step synthesis of sulfidated nanoscale iron modified kaolin clay for hexavalent chromium remediation from groundwater[J]. Groundwater for Sustainable Development, 2024, 26:101196.

[10]LIANG X L, LI Q, FANG Y. Preparation and characterization of modifiedkaolin by a mechanochemical method[J]. Materials (Basel, Switzerland), 2023, 16(8): 103390.

[11]特格希, 陶拉, 敖敦, 等. 高岭土在水污染物吸附方面的研究进展[J]. 中国粉体技术, 2024, 30(1): 46-55.

MUSCHIN T, BORJIGIN T, BAI A, et al. Recent advances in kaolin for adsorption of water pollutants[J]. China Powder Science and Technology, 2024, 30(1): 46-55.

[12] LIU C Q,HUANG Y J, WANG X Y, et al.Experimental study on adsorption of PbCl2 and CdCl2 on kaolin modified by leachates from municipal solid waste incineration power plant[J].Chemosphere,2023,340:340139970.

[13]FENG L Y, QIU T S, LIU C. Study on adsorption of ammonia nitrogen by sodium-modified kaolin at calcination temperature[J]. Environmental Science and Pollution Research International, 2023, 30(43): 97063-97077.

[14]HIDAYATULLAH M, AHMED S S, REHMAN A M. Raw and modified Pakistani Kaolin as an efficient adsorbent for the removal of arsenic from groundwater[J]. Physics and Chemistry of the Earth, 2023, 131: 103442.

[15]KHAN I R, MUSTAFA T, AHMET S, et al. Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay (KC) and their efficiency for As(III) adsorption[J]. Chemical Engineering Research and Design, 2023, 191: 523-536.

[16]HUANG Z K, BU J Q, WANG H. Application of two modified kaolin materials in removing micro-plastics from water[J].Journal of Material Cycles and Waste Management, 2022, 24(4): 1460-1475.

[17]ADAILEH D A, RAGAB H A, TAHER A M, et al. Development of a double-shelled nanocomposite of activated carbon-nanocellulose with cationic metal oxide core for enhanced adsorption of bicarbonate from underground water[J]. Inorganic Chemistry Communications, 2025, 173: 113779.

[18]MALA O W. Adsorption of humicacid from water using metal-organic frameworks (MOFs): an effective removal strategy [J]. Journal of Engineering Research and Reports, 2024, 26(7): 121-149.

[19]戴洁燕. 多级孔NaY沸石分子筛吸附空间分子污染物机制研究[D]. 上海: 上海师范大学, 2023.

DAI J Y. Mechanism of adsorption of space molecular pollutants on multi-stage porous NaY zeolite molecular sieve[D]. Shanghai: Shanghai Normal University, 2023.

[20]XIONG T, JIA L Y, LI Q C, et al. Efficient removal of uranium by hydroxyapatite modified kaolin aerogel[J]. Separation and Purification Technology, 2022, 299: 121776.

[21]ZHANG A J, LIU J, YANG Y J, et al. Experimental and theoretical studies on the adsorption performance of lead by thermal pre-activation and phosphate modified kaolin sorbent[J]. Chemical Engineering Journal, 2023, 451(P2): 138762.

[22]HANG H H, YANG Q F, ZHANG L Y, et al. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions[J]. Chemical Engineering Research and Design, 2022, 108: 296-305.

[23]BHATTACHARYYA G K, GUPTA S S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review[J]. Advances in Colloid and Interface Science, 2007, 140(2): 114-131.

[24]KHAN I R, MUSTAFA T, AHMET S, et al. Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay (KC) and their efficiency for As(III) adsorption[J]. Chemical Engineering Research and Design, 2023, 191: 523-536.

[25]HAI Y, LI X, WU H, et al. Modification of acid-activated kaolinite with TiO2 and its use for the removal of azo dyes[J]. Applied Clay Science, 2015, 114: 558-567.

[26]韩宇霞, 张斌, 赵斯琴, 等. TiO2-煤系高岭土纳米复合物的制备及其吸附性能[J]. 中国粉体技术, 2019, 25(1): 21-27.

HAN Y X, ZHANG B, ZHAO S Q, et al. Synthesis of TiO2-coal-bearing kaolinite nanocomposites and their adsorptive properties[J]. China Powder Science and Technology, 2019, 25(1): 21-27.

[27]LELLOU S, KADI S, GUEMOU L, et al. Study of methylene blue adsorption by modified kaolinite by dimethyl sulfoxide[J]. Ecological Chemistry and Engineering S, 2020, 27(2): 225-239.

[28]SONG N P, MAHY G J, FARCY A, et al. Development of novel composite materials based on kaolinitic clay modified with ZnO for the elimination of azo dyes by adsorption in water[J]. Results in Surfaces and Interfaces, 2024, 16: 100255.

[29]MUSCHIN T, DUO X, BAO U, et al.Environmentally friendly treatment of coal-bearing kaolin by polyhydroxy-iron for anionic bye removal[J]. ChemistrySelect, 2019, 4: 13810-13816.

[30]HARRISON T P. Fluoride in water: a UK perspective[J]. Journal of Fluorine Chemistry, 2005, 126 (11/12): 1448-1456.

[31]SIRIGALA L, RAMANI P, RAMALINGAM K, et al. Prevalence of dental and skeletal fluorosis among school children in rural areas of YSR Kadapa District, Andhra Pradesh, India[J]. Cureus, 2023, 15(12): 51288.

[32]AKUNO M H, NOCELLA G, MILIA E P, et al. Factors influencing the relationship between fluoride in drinking water and dental fluorosis: a ten-year systematic review and meta-analysis[J]. Journal of Water and Health, 2019, 17(6): 845-862.

[33]SOBSE Y, MARK D, BARTRAM S. Water quality and health in the new millennium: the role of the world health organization guidelines for drinking-water quality[J]. Forum of Nutrition, 2003, 56: 396-405.

[34]PANKAJ K,MANOJ K,BAKR A B, et al. A review on fluoride contamination in groundwater and human health implications and its remediation: a sustainable approaches[J]. Environmental Toxicology and Pharmacology, 2023, 106: 104356.

[35]RAJIB C, AYAM C, RAJ A S, et al.Mean fluoride concentration in drinking water sources of a municipality: adescriptive-cross-sectional study[J]. Journal of the Nepal Medical Association, 2022, 60(255): 947-951.

[36]MUHIZI P, OMPRAKASH S. Origins, mechanisms, and remedies of fluoride ions from ground and surface water: a review[J]. Chemistry Africa, 2023, 6(6): 2737-2768.

[37]MUSCHIN T, ZULCHIN H, JIA M L. Adsorption behavior of polyhydroxy-iron-modified coal-bearing kaolin for fluoride removal[J]. Chemistry Select, 2021, 6: 3075-3083.