[3]MARIAM E, RAMASUBRAMANIAN B, SUMEDHA REDDY V, et al. Emerging trends in cooling technologies for photovoltaic systems[J]. Renewable and Sustainable Energy Reviews, 2024, 192:114203.
[4]SATO D, YAMADA N. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method[J]. Renewable and Sustainable Energy Reviews, 2019, 104:151-166.
[5]DU B, HU E, KOLHE M. Performance analysis of water cooled concentrated photovoltaic (CPV) system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(9):6732-6736.
[6]WANG Y P, GAO Y Z, HUANG Q W, et al. Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement[J]. Energy Conversion and Management, 2019, 199:111990.
[7]YOON S, SEO J, CHOI M, et al. Enhanced photovoltaic efficiency through radiative cooling augmented by a thermosyphon effect[J]. Energy Conversion and Management, 2022, 268:116046.
[8]LIU J H, FAN Y N, XIE Q M. An experimental study on the thermal performance of mixed phase change materials-based battery cooling system[J]. Journal of Energy Storage, 2022, 46:103839.
[9]SHEIK M A, ARAVINDAN M K, BEEMKUMAR N, et al. Investigation on the thermal management of solar photo voltaic cells cooled by phase change material[J]. Journal of Energy Storage, 2022, 52:104914.
[10]LI R Y, SHI Y, WU M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle[J]. Nature Sustainability, 2020, 3(8):636-643.
[11]EJEIAN M, WANG R Z. Adsorption-based atmospheric water harvesting[J]. Joule, 2021, 5(7):1678-1703.
[12]LYU T Z, SUN L D, YANG Y H, et al. Bio-inspired hydrogel with all-weather adhesion, cooling and reusability functions for photovoltaic panels[J]. Solar Energy, 2021, 216:358-364.
[13]LI J L, MU X J, ZHOU J H, et al. Mussel-inspired self-adhesive and tough hydrogels for effectively cooling solar cells and thermoelectric generators[J]. ACS Applied Materials & Interfaces, 2024, 16(15):18898-18907.
[14]丁金磊,程晓舫,翟载腾,等 . 太阳电池填充因子随日照强度变化的理论分析与计算[J]. 中国工程科学,2007(6):82-87.
DING J L, CHENG X F, ZHAI Z T, et al. Theoretical analysis and calculation of the fill factor of solar cells with the variation of solar irradiance[J]. Engineering Science in China, 2007(6):82-87.
[15]GREEN M A. Accurate expressions for solar cell fill factors including series and shunt resistances[J]. Applied Physics Letters, 2016, 108(8):081111.
[16]杨德仁. 太阳电池材料[M]. 北京:化学工业出版社,2018.
YANG D R. Solar cell materials [M]. Beijing: Chemical Industry Press,2018.
[17]GRAEBER G, DÍAZ-MARÍN C D, GAUGLER L C, et al. Intrinsic water transport in moisture-capturing hydrogels[J]. Nano Letters, 2024, 24(13):3858-3865.
[18]WU H, XIE S, CHEN G, et al. Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications[J]. Journal of Colloid and Interface Science, 2025, 683:81-91.
[19]DÍAZ-MARÍN C D, ZHANG L N, EL FIL B, et al. Heat and mass transfer in hygroscopic hydrogels[J]. International Journal of Heat and Mass Transfer, 2022, 195:123103.
[20]潘琪,李静,闫良国. 光热材料-木材太阳能驱动界面蒸发器研究进展[J]. 中国粉体技术,2024,30(1):90-102.
PAN Q, LI J, YAN L G. Research progress of photothermal material-wood evaporators for solar-driven interfacial evaporation[J]. China Powder Science and Technology, 2024, 30(1):90-102.
[21]NAH S H, LEE Y C, YU K H, et al. Moisture absorbing and water self-releasing from hybrid hydrogel desiccants[J]. Advanced Functional Materials, 2024, 34(19):2470105.
[22]YUE Y Y, WANG X H, HAN J Q, et al. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities[J]. Carbohydrate Polymers, 2019, 206:289-301.
[23]LI Z P, MA T, JI F, et al. A hygroscopic composite backplate enabling passive cooling of photovoltaic panels[J]. ACS Energy Letters, 2023, 8(4):1921-1928.
[24]ZHOU Z W, ZHANG Y T, LIU W J, et al. Photovoltaic cooling and atmospheric water harvesting using a hygroscopic hydrogel[J]. Desalination, 2024, 583:117685.
[25]LU H Y, SHI W, ZHANG J H, et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates[J]. Advanced Materials, 2022, 34(37):2205344.
[26]ZHAN L L, LI S X, LI Y K, et al. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics[J]. Joule, 2022, 6(3):662-675.
[27]ZENG Y H, LI D Q, WU H B, et al. Enhanced charge transport and broad absorption enabling record 18. 13% efficiency of PM6: Y6 based ternary organic photovoltaics with a high fill factor over 80%[J]. Advanced Functional Materials, 2022, 32(13):2110743.
[28]WAGNER J, GRUBER M, HINDERHOFER A, et al. High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material[J]. Advanced Functional Materials, 2010, 20(24):4295-4303.
[29]翟涵. 太阳能电池光电转化过程中的温度效应研究[D]. 南京:南京理工大学,2021.
ZHAI H. Study on the temperature effect in photovoltaic conversion process of solar cells[D]. Nanjing: Nanjing University of Science and Technology, 2021.