ISSN 1008-5548

CN 37-1316/TU

最新出版

掺杂碳纳米颗粒水凝胶的太阳能电池被动冷却性能

Passive cooling performance of solar cells with carbon nanoparticle-doped hydrogels


程湛林1 ,张慧鑫1 ,张新宇1,2 ,张 雷1 ,洪文鹏1 ,李浩然1

1. 东北电力大学 能源与动力工程学院,吉林 吉林 132002;2. 南京航空航天大学 能源与动力学院,江苏 南京 210016


引用格式:

程湛林,张慧鑫,张新宇,等 . 掺杂碳纳米颗粒水凝胶的太阳能电池被动冷却性能[J]. 中国粉体技术,2025,31(4):1-9.

CHENG Zhanlin, ZHANG Huixin, ZHANG Xinyu, et al. Passive cooling performance of solar cells with carbon nanoparticle-doped hydrogels[J]. China Powder Science and Technology,2025,31(4):1−9.

DOI:10.13732/j.issn.1008-5548.2025.04.012

收稿日期:2024-07-10,修回日期:2025-04-15,上线日期:2025-05-29。

基金项目:国家自然科学基金项目,编号:52106195;吉林省重点研发项目,编号:20230203049SF。

第一作者简介:程湛林(2000—),男,硕士生,研究方向为太阳能电池被动冷却技术。E-mail:cc1742206524@163. com。

通信作者简介:李浩然(1992—),男,副教授,博士,博士生导师,研究方向为低碳能源。E-mail:haoran@neepu. edu. cn。


摘要:【目的】为了提高太阳能电池被动散热效果,制备基于吸湿-解吸原理的掺碳纳米颗粒复合水凝胶,探讨复合水凝胶的吸湿-解吸特性对太阳能电池冷却性能的影响。【方法】采用自由基聚合法制备掺不同质量分数碳纳米颗粒的复合水凝胶;通过水凝胶解吸特性试验测试掺不同质量分数碳纳米颗粒的水凝胶的解吸能力;将掺入碳纳米颗粒的水凝胶作为太阳能电池冷却层,开展太阳能电池冷却试验,对比不同质量分数碳纳米颗粒水凝胶的冷却性能。【结果】所制得样品中,掺入的碳纳米颗粒质量分数为5%时,复合水凝胶的解吸性能最好,在太阳辐照度为1 000 W/m2 时,太阳能电池运行温度降低约11. 6 ℃;贴附水凝胶冷却层的太阳能电池与无冷却层的太阳能电池相比,在标准辐照度下运行15 min后,开路电压高约30 mV,运行30 min后,填充因子提高约4. 58%,在运行120 min后,光伏电池效率提高了0. 41%。【结论】添加碳纳米颗粒能够提高吸湿性水凝胶的解吸性能;将吸湿性水凝胶用作太阳能电池的冷却层,其解吸能力越强,对应的冷却效果越显著。

关键词:太阳能电池;被动冷却;碳纳米颗粒;水凝胶;大气集水;蒸发冷却

Abstract

Objective Hydrophilic hydrogels are essential in evaporative cooling applications. By utilizing waste heat generated by solar cells, the hydrogels can drive internal moisture evaporation and reduce their operating temperature. However, the inherently low thermal conductivity often limits their cooling effectiveness. To address this limitation, thermally conductive fillers such as carbon nanoparticles can be incorporated into hydrogel matrices to enhance both thermal transport and moisture regulation. Carbon nanomaterials, known for their exceptional nanoscale thermal conductivity, offer a promising approach to enhancing hydrogel performance. This incorporation not only enhances the thermal conductivity of the hydrogel but also modulates its microstructure, optimizing its moisture absorption-desorption characteristics. In this study, a series of carbon nanoparticle-doped hydrogels were developed, and their moisture absorption-desorption properties were analyzed to evaluate their potential for passive cooling in solar cells.

Methods To evaluate the moisture management performance of hydrogels, samples with five different mass fractions of carbon nanoparticles were synthesized and tested (S1-5). Moisture absorption tests were conducted in a constant temperature and humidity chamber (25 ℃), where changes in hydrogel mass were recorded over time. Desorption tests were then performed in a still air laboratory environment, where the doped hydrogels were applied as cooling layers on solar panels and illuminated by a solar simulator. A precision electronic balance continuously measured the hydrogel mass during evaporation, while thermocouples monitored the back-surface temperature of the solar cells. In addition, an electrochemical workstation was used to monitor the current-voltage (I-V) characteristics of the solar cells. Data analysis and visualization were performed using Origin software to quantitatively evaluate the cooling performance of each hydrogel sample. This comprehensive evaluation aimed to determine how carbon nanoparticle doping enhances the evaporative cooling efficiency of hydrogels for photovoltaic applications.

Results and Discussion The results showed that S5 exhibited the highest moisture absorption capacity. Under standard illumination conditions, the desorption capacity was significantly enhanced in hydrogel samples doped with carbon nanoparticles. Among them, S2 demonstrated the best desorption and cooling performance. To further explore the cooling performance, key performance parameters of the solar cells were tested. In real hydrogel applications, the open-circuit voltage increased by approximately 30 mV, the fill factor improved by 4. 58%, and the energy conversion has increased by 0. 41%.

Conclusion This study develops and evaluates carbon nanoparticle-doped hydrogels for the passive cooling of solar cells. The hydrogel containing 20% carbon nanoparticles shows the highest water absorption capacity, while the sample with 5% carbon nanoparticles exhibits the most favorable desorption and cooling performance. The introduction of carbon nanoparticles significantly improves the hydrogel’s moisture absorption-desorption efficiency and accelerates water evaporation, thereby improving the passive heat dissipation capacity of solar cells.

Keywords:solar cell; passive cooling; carbon nanoparticle; hydrogel; atmospheric water harvesting; evaporative cooling


参考文献(References)

[1]艾琳,司俊龙,陈喜军 . 2024 年中国光伏发电行业发展现状与展望[J/OL]. 水力发电,2025:1-6. (2025-03-20). https://kns. cnki. net/KCMS/detail/detail. aspx?filename=SLFD20250318003&dbname=CJFD&dbcode=CJFQ.

AI L, SI J L, CHEN X J. Development status and prospect of photovoltaic power generation industry in China in 2024[J/ OL]. China Industrial Economics, 2025:1-6. (2025-03-20). https://kns. cnki. net/KCMS/detail/detail. aspx?filename=SLFD20250318003&dbname=CJFD&dbcode=CJFQ.

[2]张永一川,章学来,徐笑锋. 太阳能光伏系统冷却技术的发展进程[J]. 储能科学与技术,2019,8(5):821-828.

ZHANG Y Y C, ZHANG X L, XU X F. Development process of solar photovoltaic system cooling technology[J]. Energy Storage Science and Technology, 2019, 8(5):821-828.

[3]MARIAM E, RAMASUBRAMANIAN B, SUMEDHA REDDY V, et al. Emerging trends in cooling technologies for photovoltaic systems[J]. Renewable and Sustainable Energy Reviews, 2024, 192:114203.

[4]SATO D, YAMADA N. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method[J]. Renewable and Sustainable Energy Reviews, 2019, 104:151-166.

[5]DU B, HU E, KOLHE M. Performance analysis of water cooled concentrated photovoltaic (CPV) system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(9):6732-6736.

[6]WANG Y P, GAO Y Z, HUANG Q W, et al. Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement[J]. Energy Conversion and Management, 2019, 199:111990.

[7]YOON S, SEO J, CHOI M, et al. Enhanced photovoltaic efficiency through radiative cooling augmented by a thermosyphon effect[J]. Energy Conversion and Management, 2022, 268:116046.

[8]LIU J H, FAN Y N, XIE Q M. An experimental study on the thermal performance of mixed phase change materials-based battery cooling system[J]. Journal of Energy Storage, 2022, 46:103839.

[9]SHEIK M A, ARAVINDAN M K, BEEMKUMAR N, et al. Investigation on the thermal management of solar photo voltaic cells cooled by phase change material[J]. Journal of Energy Storage, 2022, 52:104914.

[10]LI R Y, SHI Y, WU M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle[J]. Nature Sustainability, 2020, 3(8):636-643.

[11]EJEIAN M, WANG R Z. Adsorption-based atmospheric water harvesting[J]. Joule, 2021, 5(7):1678-1703.

[12]LYU T Z, SUN L D, YANG Y H, et al. Bio-inspired hydrogel with all-weather adhesion, cooling and reusability functions for photovoltaic panels[J]. Solar Energy, 2021, 216:358-364.

[13]LI J L, MU X J, ZHOU J H, et al. Mussel-inspired self-adhesive and tough hydrogels for effectively cooling solar cells and thermoelectric generators[J]. ACS Applied Materials & Interfaces, 2024, 16(15):18898-18907.

[14]丁金磊,程晓舫,翟载腾,等 . 太阳电池填充因子随日照强度变化的理论分析与计算[J]. 中国工程科学,2007(6):82-87.

DING J L, CHENG X F, ZHAI Z T, et al. Theoretical analysis and calculation of the fill factor of solar cells with the variation of solar irradiance[J]. Engineering Science in China, 2007(6):82-87.

[15]GREEN M A. Accurate expressions for solar cell fill factors including series and shunt resistances[J]. Applied Physics Letters, 2016, 108(8):081111.

[16]杨德仁. 太阳电池材料[M]. 北京:化学工业出版社,2018.

YANG D R. Solar cell materials [M]. Beijing: Chemical Industry Press,2018.

[17]GRAEBER G, DÍAZ-MARÍN C D, GAUGLER L C, et al. Intrinsic water transport in moisture-capturing hydrogels[J]. Nano Letters, 2024, 24(13):3858-3865.

[18]WU H, XIE S, CHEN G, et al. Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications[J]. Journal of Colloid and Interface Science, 2025, 683:81-91.

[19]DÍAZ-MARÍN C D, ZHANG L N, EL FIL B, et al. Heat and mass transfer in hygroscopic hydrogels[J]. International Journal of Heat and Mass Transfer, 2022, 195:123103.

[20]潘琪,李静,闫良国. 光热材料-木材太阳能驱动界面蒸发器研究进展[J]. 中国粉体技术,2024,30(1):90-102.

PAN Q, LI J, YAN L G. Research progress of photothermal material-wood evaporators for solar-driven interfacial evaporation[J]. China Powder Science and Technology, 2024, 30(1):90-102.

[21]NAH S H, LEE Y C, YU K H, et al. Moisture absorbing and water self-releasing from hybrid hydrogel desiccants[J]. Advanced Functional Materials, 2024, 34(19):2470105.

[22]YUE Y Y, WANG X H, HAN J Q, et al. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities[J]. Carbohydrate Polymers, 2019, 206:289-301.

[23]LI Z P, MA T, JI F, et al. A hygroscopic composite backplate enabling passive cooling of photovoltaic panels[J]. ACS Energy Letters, 2023, 8(4):1921-1928.

[24]ZHOU Z W, ZHANG Y T, LIU W J, et al. Photovoltaic cooling and atmospheric water harvesting using a hygroscopic hydrogel[J]. Desalination, 2024, 583:117685.

[25]LU H Y, SHI W, ZHANG J H, et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates[J]. Advanced Materials, 2022, 34(37):2205344.

[26]ZHAN L L, LI S X, LI Y K, et al. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics[J]. Joule, 2022, 6(3):662-675.

[27]ZENG Y H, LI D Q, WU H B, et al. Enhanced charge transport and broad absorption enabling record 18. 13% efficiency of PM6: Y6 based ternary organic photovoltaics with a high fill factor over 80%[J]. Advanced Functional Materials, 2022, 32(13):2110743.

[28]WAGNER J, GRUBER M, HINDERHOFER A, et al. High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material[J]. Advanced Functional Materials, 2010, 20(24):4295-4303.

[29]翟涵. 太阳能电池光电转化过程中的温度效应研究[D]. 南京:南京理工大学,2021.

ZHAI H. Study on the temperature effect in photovoltaic conversion process of solar cells[D]. Nanjing: Nanjing University of Science and Technology, 2021.