ISSN 1008-5548

CN 37-1316/TU

最新出版

气泡对超声法悬浮液颗粒粒径表征的影响

Effect of bubbles on characterization of particle size in suspensions using ultrasound


牛格格, 张世玮, 郭 萍, 苏明旭, 蔡小舒

上海理工大学 能源与动力工程学院, 上海200093

引用格式:

牛格格, 张世玮, 郭萍, 等. 气泡对超声法悬浮液颗粒粒径表征的影响[J]. 中国粉体技术, 2025, 31(6): 1-13.

NIU Gege, ZHANG Shiwei, GUO Ping, et al. Effect of bubbles on characterization of particle size in suspensions using ultrasound[J]. China Powder Science and Technology, 2025, 31(6): 1−13.

DOI:10.13732/j.issn.1008-5548.2025.06.012

收稿日期: 2025-01-11, 修回日期: 2025-03-20, 上线日期: 2025-05-27。

基金项目: 国家自然科学基金项目,编号 :52376162。

第一作者简介: 牛格格(1999—),女,硕士生,研究方向为超声颗粒测量。E-mail:315140849@qq. com。

通信作者简介: 苏明旭(1973—),男,教授,博士,博士生导师,研究方向为颗粒与两相流测量。E-mail:sumx@usst. edu. cn。


摘要: 【目的】分析液固两相体系中含有不同粒径、混合比(气泡在混合颗粒体系中所占数量比,下同)的微米级气泡条件下超声衰减及粒径反演结果,评估气泡对固体颗粒超声衰减以及粒径表征的影响。【方法】 在单个固体弹性颗粒和气泡声散射与声吸收理论基础上,建立固体颗粒-气泡混合体系的蒙特卡罗物理模型; 针对单、 多分散状态微米级玻璃珠的水悬浮液体系,数值分析不同粒径和混合比气泡条件的超声衰减问题,探讨其对衰减谱的影响; 研究粒子群算法颗粒粒径反演问题,量化评估气泡存在导致的误差。【结果】 气泡和玻璃珠半径为10 μm、超声频率为1~10 MHz时,混合比为1%的气泡导致的衰减谱均方根误差达到16. 42; 从反演结果看,气泡半径为10 μm、混合比为0. 1%时,玻璃珠颗粒粒径反演相对误差近15%; 半径为60 μm,混合比为0. 1%的气泡,所致反演结果相对误差仅为0. 4%。【结论】 混合比极低(小于1%)的微米级气泡对超声衰减谱及玻璃珠粒径表征会产生明显影响,且受共振散射的影响,气泡尺寸越小,影响越大。

关键词: 超声衰减; 蒙特卡罗方法; 气泡; 颗粒; 粒径反演


Abstract

Objective When ultrasonic waves propagate through a liquid-solid suspension containing gas bubbles, significant acoustic scattering occurs at the gas-liquid interface due to the large acoustic impedance contrast, resulting in excess acoustic attenuation.This introduces errors in characterizing the particle size of solid particles based on the acoustic attenuation spectral analysis. The ultrasonic attenuation and inversion results are analyzed in a liquid-solid two-phase system by changing particle size and mixingratio of micrometer bubbles, evaluating their influence on acoustic attenuation and the accuracy of particle size characterization for solid particles.

Methods The acoustic scattering and absorption characteristics of solid elastic particles and bubbles were compared and analyzed, with a focus on the resonance scattering properties of bubbles. Based on the theory of acoustic scattering and absorption  in single solid elastic particles and bubbles, a Monte Carlo model for the solid particle-bubble hybrid system was developed.Numerical analysis was conducted on the ultrasonic attenuation of bubbles with different sizes and mixing ratios in monodisperse and polydisperse aqueous suspensions of micron-sized glass beads to evaluate their effect on the acoustic attenuation spectra.Furthermore, by comparing the accuracy of particle size inversion using the differential evolution algorithm, genetic algorithm,and particle swarm optimization algorithm, the particle swarm algorithm was selected to investigate the deviation in particle size inversion caused by the presence of bubbles.

Results and Discussion As the bubble mixing ratio increased, the decay curve of the mixed particle system gradually shifted upward, with the root mean square error of the mixed particle system reaching up to 16. 42. According to the particle size inversion results, in a monodisperse system where the bubbles and glass bead radius were 60 μm, the error was about 0. 4% at a mixing ratio of 0. 1%, around 1% at 0. 3%, and about 6% at 1%. In the polydisperse system, a higher bubble mixing ratio led to an increase in the inverted particle size and a broader distribution width. For the ultrasonic frequency range of 1~10 MHz, micronsized bubbles( >10 μm) were located at the right side of the resonance scattering region. As the bubble size and ultrasonic frequency decreased( gradually approaching the resonance scattering region), the effect of bubbles on acoustic attenuation and particle size characterization of solid particles became more significant. When the radius of both bubble and glass bead was 60 μm,the inversion error remained around 0. 4% at a 0. 1% mixing ratio. However, for bubbles with a 30 μm radius, the error increased to about 2% at the same mixing ratio. At a radius of 10 μm, bubbles with a 0. 1% mixing ratio caused an inversion error of nearly 15%.

Conclusion This study establishes a Monte Carlo model for a gas-liquid-solid three-phase mixed particle system and evaluates

the effect of micro-bubbles on acoustic attenuation spectra and particle size characterization. The findings indicate that as the bubble mixing ratio increases, the errors in ultrasound attenuation and particle size characterization also increase. Moreover,resonance scattering significantly amplifies the errors when the bubble sizes approach the resonance scattering region. These results provide a theoretical basis for evaluating and mitigating bubble interference in particle measurement experiments.

Keywords: ultrasound attenuation; Monte Carlo method; bubbles; particle; size inversion

参考文献(References)

[1]FERTAKI S, BAGOURAKIS G, ORKOULA M, et al. Measuring bismuth oxide particle size and morphology in film-coated Tablets[J]. Molecules, 2022, 27(8): 2602.

[2]HOSSEINI S M M, BAHRAMI E, FARAZMAND R, et al. Effect of particle size distribution on the class G oil well cement properties: experimental measurement and intelligent modelling[J]. Geoenergy Science and Engineering, 2024, 240:213030.

[3]SARAIVA N B, PEREIRA L D, GASPAR A R, et al. Measurement of particulate matter in a heritage building using optical counters: long-term and spatial analyses[J]. Science of the Total Environment, 2023, 862: 160747.

[4]姬厚展, 高正阳, 李永华, 等. 在线检测中不同形状煤粉颗粒的流动特性[J]. 中国粉体技术, 2023, 29(1): 1-9.

JI H Z, GAO Z Y, LI Y H, et al. Flow characteristics of pulverized coal particles with different shapes in online detection[J].China Powder Science and Technology, 2023, 29(1): 1-9.

[5]刘泽奇, 仪显亨, 蔡天意, 等 . 纳米颗粒粒径、形貌及大体积分数颗粒粒径测量[J]. 中国粉体技术, 2025, 31(1):118-129.

LIU Z Q, YI X H, CAI T Y, et al. Measurement of nanoparticle size, morphology and large volume fraction particle size[J].China Powder Science and Technology, 2025, 31(1): 118−129.

[6]时文龙, 苏明旭, 周健明, 等 . 基于 DDS叠加波的双频超声法测量管内煤粉参数[J]. 中国粉体技术, 2017, 23(2):24-29, 34.

SHI W L, SU M X, ZHOU J M, et al. Measuring pulverized coal parameter in power plant pipeline based on DDS superposition ultrasonic wave[J]. China Powder Science and Technology, 2017, 23(2): 24-29, 34.

[7]TSUJI, K, NAKANISHI H, NORISUYE T. Viscoelastic ECAH: scattering analysis of spherical particles in suspension with viscoelasticity[J]. Ultrasonics, 2021, 115: 106463.

[8]JAMEEL B, BIELAS R, JÓZEFCZAK A. Ultrasound measurements of particle shells in magnetic Pickering emulsions[J].Measurement, 2023, 220: 113409.

[9]BOONKHAO B, WANG X Z, SRINOPHAKUN T R. Non-negative differential evolution for particle sizing from ultrasonic attenuation spectroscopy[J]. Powder Technology, 2021, 378: 602-617.

[10]XUE R J, WANG X C, YANG Q, et al. Grain size distribution characterization of aluminum with a particle swarm optimization neural network using laser ultrasonics[J]. Applied Acoustics, 2021, 180: 108125.

[11]ZHANG S W, SU G Y, LIU H B, et al. On-line measurement of particle size in high-concentration limestone slurry pipe line by Monte Carlo based ultrasonic attenuation mode[l J]. Measurement, 2024,235: 115007.

[12]FALOLA A A, HUANG M X, ZOU X W, et al. Characterization of particle size distribution in slurries using ultrasonic attenuation spectroscopy: addressing challenges of unknown physical properties[J]. Powder Technology, 2021, 392:394-401.

[13]MINNAERT M. XVI. On musical air-bubbles and the sounds of running water[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 16(104): 235-248.

[14]YE Z. On sound scattering and attenuation of Albunex® bubbles[J]. The Journal of the Acoustical Society of America,1996, 100(4): 2011-2028.

[15]WANG Y, CHEN D, WU P F. Multi-bubble scattering acoustic fields in viscoelastic tissues under dual-frequency ultrasound[J]. Ultrasonics Sonochemistry, 2023, 99: 106585.

[16]ZHENG Y, ZHANG Q K. Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique[J]. Chemical Engineering Science, 2004, 59(17): 3505-3514.

[17]ZHAN X B, YANG Y L, LIANG J, et al. Gas bubble effects and elimination in ultrasonic measurement of particle concentrations in solid-liquid mixing processes[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7):1711-1718.

[18]HAY A E, MERCER D G. On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths[J]. The Journal of the Acoustical Society of America, 1985, 78(5): 1761-1771.

[19]AZZI V D, CELIKKOL B. Sound scattering from bubbles[J]. Journal of Sound and Vibration, 1971, 17(2): 143-148.

[20]HSIEH D Y, PLESSET M S. Theory of the acoustic absorption by a gas bubble in a liquid[R]. California Institute of Technology, 1961.

[21]CHALLIS R E, POVEY M J W, MATHER M L, et al. Ultrasound techniques for characterizing colloidal dispersions[J].Reports on Progress in Physics, 2005, 68(7): 1541.

[22]GU J F, FAN F X, LI Y S, et al. Modeling and prediction of ultrasonic attenuations in liquid-solid dispersions containing mixed particles with Monte Carlo method[J]. Particuology, 2019, 43: 84-91.

[23]祖晓萌, 朱曙光. 基于蒙特卡罗法模拟高含量气固两相流声衰减[J]. 中国粉体技术, 2021, 27(2): 74-81.

ZU X M, ZHU S G. Simulation of ultrasonic attenuation in concentrated gas-solid two-phase flow based on Monte Carlo method[J]. China Powder Science and Technology, 2021, 27(2): 74-81.

[24]BILAL, PANT M, ZAHEER H, et al. Differential evolution: a review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103479.

[25]KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools Applications, 2021, 180: 8091-8126.

[26]冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753.

FENG Q, LI Q, QUAN W, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753.

[27]黄茜, 苏格毅, 孙存金, 等 . 混合颗粒系蒙特卡罗消光模型及反演方法[J]. 光谱学与光谱分析, 2024,44(4):956-962.

HUANG Q, SU G Y, SUN C J, et al. Monte Carlo extinction model and inversion method for mixed particle system[J].Spectroscopy and Spectral Analysis, 2024,44(4): 956-962.